Proof Nets for the Lambek Calculus with One Division and a Negative-Polarity Modality for Weakeningстатья
Информация о цитировании статьи получена из
Scopus
Статья опубликована в журнале из перечня ВАК
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 26 июня 2024 г.
Аннотация:In this paper, we introduce a variant of the Lambek calculus allowing empty antecedents. This variant uses two connectives: the left division and a unary modality that occurs only with negative polarity and allows weakening in antecedents of sequents. We define the notion of a proof net for this calculus, which is similar to those for the ordinary Lambek calculus and multiplicative linear logic. We prove that a sequent is derivable in the calculus under consideration if and only if there exists a proof net for it. Thus, we establish a derivability criterion for this calculus in terms of the existence of a graph with certain properties. The size of the graph is bounded by the length of the sequent.