The proton-driven rotor of ATP synthase: Ohmic conductance (10 fS), and absence of voltage gatingстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 июля 2013 г.
Аннотация:The membrane portion of F(0)F(1)-ATP synthase, F(0), translocates protons by a rotary mechanism. Proton conduction by F(0) was studied in chromatophores of the photosynthetic bacterium Rhodobacter capsulatus. The discharge of a light-induced voltage jump was monitored by electrochromic absorption transients to yield the unitary conductance of F(0). The current-voltage relationship of F(0) was linear from 7 to 70 mV. The current was extremely proton-specific (>10(7)) and varied only slightly (approximate tothreefold) from pH 6 to 10. The maximum conductance was approximate to10 fS at pH 8, equivalent to 6240 H(+) s(-1) at 100-mV driving force, which is an order-of-magnitude greater than of coupled F(0)F(1). There was no voltage-gating of F(0) even at low voltage, and proton translocation could be driven by DeltapH alone, without voltage. The reported voltage gating in F(0)F(1) is thus attributable to the interaction of F(0) with F(1) but riot to F(0) proper. We simulated proton conduction by a minimal rotary model including the rotating c-ring and two relay groups mediating proton exchange between the ring and the respective membrane surface. The data fit attributed pK values of approximate to6 and approximate to10 to these relays, and placed them close to the membrane/electrolyte interface.