On Isometric Immersions in~$E^{3}$ of Noncompact Domains of the Lobachevsky Plane whose Boundaries Possess a Countable Set of Points on the Absoluteстатья
Статья опубликована в журнале из перечня ВАК
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 8 декабря 2019 г.
Аннотация:We consider the problem of an isometric immersion in~$E^{3}$ of a noncompact region of the Lobachevsky plane. A new class of regions is indicated that admit an isometric immersion in~$E^{3}$, and having a boundary in the Poincar\`{e} interpretation with countably many points on the absolute. In particular, the indicated class contains some convex regions with boundary having an infinitely high order of contact with the absolute. The possibility of immersion is guaranteed by certain conditions of a metric character, which should be satisfied by the regions.