![]() |
ИСТИНА |
Войти в систему Регистрация |
ИСТИНА ПсковГУ |
||
Основной теоретической целью исследования является решение ряда актуальных задач геометрической теории приближений и сопутствующих актуальных задач из геометрии линейных нормированных и несимметрично нормированных пространств и комбинаторной геометрии выпуклых множеств, а также актуальных задач теоретической информатики. Приложения включают применение теории приближений для нахождения решений уравнения эйконала (основного уравнения геометрической оптики), теория нейронных сетей и ее применения в задачах биологической активности молекулярных графов, исследование архитектуры нейронных сетей, построенных на RBF-элементах, а также задачи машинного обучения. Проект является междисциплинарным. В нем изучаются как теоретические вопросы теории приближений и теоретической информатики, так и их приложения, получаемые, в том числе, при применении аппарата теории приближений к задачам теоретической информатики. Машинное обучение оказывает огромное влияние на мир с помощью таких продуктов, как автоматическое распознавание лиц и объектов в компьютерном зрении, автомобили с автономным управлением, автоматический перевод и множество других продуктов. Тем не менее, большая часть исследований по машинному обучению, как правило, фокусируется на успешных алгоритмах для конкретных задач машинного обучения. Более широкая теоретическая картина того, когда и почему алгоритмы машинного обучения успешны, как правило, обсуждается в ряде смежных областей и дисциплин, охватывающих прикладную математику, теорию компьютерных наук и статистику. В частности, в теоретических и практических вопросах машинного обучения и нейронных сетей большую роль стала играть теория приближений, к примеру, при исследовании существующих и будущих актуальных задач машинного обучения и науки о данных (data science). В настоящее время связи между теорией приближений и машинным обучением раскрываются всё полнее. Алгоритмы конструктивной аппроксимации функций имеют много общих черт с контролируемыми методами обучения - к примеру, классический метод наименьших квадратов активно используется как в полиномиальной аппроксимации, так и в регрессионном анализе. Теория приближений и, в частности, ее геометрическая часть, в настоящий момент активно применяется для создания основанных на геометрии методы статистического обучения для выполнения редукции моделей и моделирования некоторых классов стохастических многомерных динамических систем. В этой связи в проекте исследуются различные примеры из молекулярной динамики, иллюстрирующие эти идеи, в которых важную роль играют техника из различных областей математики и теоретической информатики.
The main aim is to solve a number of long-standing problems in geometric theory of approximation and giving answers to corresponding problems from the geometry of normed and asymmetrically normed spaces and the geometry of convex sets. Applications include finding solutions of the eikonal equation via approximation theory machinery, theory of neural networks and its applications in problems of biological activity of molecular graphs, the study of the architecture of neural networks based on RBF-elements, and machine learning problems.
Будут получены новые результаты о различных непрерывных выборках из операторов почти наилучших приближений в новых терминах, в частности опирающихся на свойства метрической функции. Планируется установить новые результаты об устойчивости чебышёвского проектора в полиэдральных пространствах и о существовании липшицевых выборок из множества относительных чебышёвских центров. В проекте будут изучены аппроксимативные свойства множеств, у которых оператор метрической антипроекции (max-проекции) является однозначным и устойчивым. Изучить аналоги условия Колмогорова (характеризации наилучшего приближения) в терминах метрической антипроекции. Охарактеризовать множества с непрерывной (полунепрерывной снизу) метрической проекцией в пространстве $\ell^\infty_n$. Дать описание трехмерных пространств, в которых всякое множество с непрерывной метрической проекцией монотонно линейно связно. Исследовать вопрос о монотонной линейной связности чебышёвских множеств в трехмерных пространствах. Будет проведены исследования и практические шаги по разработке нейросетевых компонент автоматизированной проверяющей системы и разработке электронных курсов на базе автоматизированной проверяющей системы. Будет проведена опытная эксплуатация системы цифровой образовательной платформы в курсе «Работа на ЭВМ и программирование» и организован свободный доступ студентов к материалам занятий для индивидуальной подготовки «В Контакте». Будут исследованы метрические свойства признаковых пространств, описывающих обучающие множества для ряда выборок молекулярных графов, имеющих как биологические, так и физико-химические свойства на основе «структурного символьного спектра» молекулярного графа. Будет проведено формирование и кластерная обработка семейства матриц «молекула-дескриптор». Продолжить исследования по обоснованию устройства глубокой нейронной сети. Получить ряд результатов по цифровой обработке изображений и машинному обучению. Рассмотреть специальные вопросы теории компиляции и теоретической информатики. Рассмотреть основные и вспомогательные понятия для задач рекомендательных систем.
Участники проекта имеют ряд публикаций по рассматриваемым вопросам. Опубликованы два обзора в журнале "Успехи математических наук" (2016 и 2019 гг.). Имеется ряд публикаций в профильных научных журналах как теоретического, так и прикладного характера (статьи опубликованы, в частности, в следующих журналах: Математический сборник, Вестник кибернетики, Доклады РАН, J. Fixed Point Theory Appl., Вестник МГУ, Дифференц. уравнения, J. Convex Anal., Set-Valued Var. Anal., Труды МИАН, Труды НИИСИ РАН и др). Авторами Проекта подготовлен несколько монографий и учебников по исследуемым темам (см. библиографию по Проекту).
Получен ряд новых аппроксимативно-геометрических свойств множеств с полунепрерывным снизу оператором метрической проекции. Показано, что в конечномерном банаховом пространстве замкнутое множество с полунепрерывной снизу метрической проекцией обладает непрерывной выборкой из оператора почти наилучшего приближения. Получены новые результаты о существовании различных непрерывных выборкок из операторов почти наилучших приближений в новых терминах, в частности опирающихся на свойства метрической функции. Установлена (совместно с Е.В.Щепиным) выпуклость чебышёвских множеств (в конечомерном случае) и солнц по касательным направлениям единичной сферы. Решена давно стоящая задача о характеризации строго солнца через свойство ацикличности значений метрической проекции. Сформулировано условие принадлежности элемента кластеру – классический и нечеткий (fuzzy) варианты, - позволяющие корректно определить «область допустимых значений» и иметь возможность отказа от прогноза для «чужих» объектов, что повышает качество прогнозирования свойств новых химических соединений. Разработана методика формирования положения в метрическом пространстве параллельно работающих вычислительных элементов (RBF-нейронов). Разработан алгоритм на основе методики и проведена его программная реализация на языке Python. Программа позволяет оптимально выбирать с точки зрения скользящего контроля покрытие кластера интерполирующими кернел-элементами при построения на них непараметрической регрессии. Разработана методика выбора покрытия кластера формальными элементами при использовании алгоритма Форэль. Разработан алгоритм на основании методики и проведена его программная реализация на языке Python. Программа позволяет оптимально выбирать параметр работы алгоритма Форэль – радиус покрытия R. Разработан эволюционный алгоритм решения задачи оптимального выбора подмножества дескрипторов, на которых задается метрика для «очень широких» матриц «молекула-дескриптор» на основе метода МГУА (метода группового учета аргументов). Проведено исследование метрических свойств признаковых пространств, описывающих обучающие множества для ряда выборок для молекулярных графов, имеющих как биологические, так и физико-химические свойства.
госбюджет, раздел 0110 (для тем по госзаданию) |
# | Сроки | Название |
1 | 1 января 2016 г.-31 декабря 2016 г. | Аппроксимативно-геометрические свойства множеств в линейных нормированных пространствах |
Результаты этапа: Задачи о структурных свойствах солнц рассматривалась в работах С.\,Б. Стечкина, Н.В. Ефимова, В. Кли, В.И. Бердышева, Л.П. Власова, Б. Брозовского, Ф. Дойча, Х. Беренса, Г.Е. Иванова и др. Солнца являются наиболее естественным объектом, для которого выполнен критерий Колмогорова о характеризации элемента наилучшего приближения. В 2016 г. установлено, что в трехмерном банаховом пространстве $X$ замкнутое $P$-солнечное множество $M\subset X$ является солнцем. Показано, что в конечномерном банаховом пространстве $B$-солнечное LG-множество является строгим солнцем, а произвольное $B$-солнце является солнцем. Пусть $X$~-- банахово пространство, $ dim X \le 3$, и пусть множество $M$ -- $P$-ациклично. Тогда $M$ обладает непрерывной аддитивной (мультипликативной) $\varepsilon$-выборкой для любого $\varepsilon > 0$. Этот результат дает ответ на ряд давно стоящих вопросов о геометрических и топологических свойствах строгих солнц в произвольных трехмерных нормированных или несимметрично нормированных пространствах. Установлены следующие результаты. 1. Пусть $M$~-- ограниченно компактное монотонно линейно связное подмножество банахова пространства. Тогда следующие условия эквивалентны: {\rm 1)} $M$ имеет {\rm ORL}-непрерывную метрическую проекцию; {\rm 2)} $M$ является $B$-клеточноподобным строгим солнцем; {\rm 3)} является строгим солнцем. Отметим, что в этом результате множество не обязано быть $P$-выпуклым. Иными словами, полунепрерывная снизу метрическая проекция на замкнутое множество в трехмерном пространстве не обязана иметь выпуклые образы. Рассмотрим соответствующий пример. В~пространстве $\ell^\infty_3$ определим множество $M$ как $\{(x_1,x_2,x_3)\mid x_2=\sqrt {1-x_1^2}$, $x_3=0$, $0\le x_1\le 1\}$. Легко проверить, что метрическая проекция на~$M$ непрерывна (и, в~частности, полунепрерывна снизу). Однако $M$, очевидно, не является $P$-выпуклым. 2. Пусть $M$ -- замкнутое множество с полунепрерывной снизу метрической проекцией в банаховом пространстве размерности не более~$ 3$. Тогда $M$ -- солнце, $B$-стягиваемо, $B$-ретракт и на $M$ существует непрерывная выборка из метрической проекции. 3. Пусть $M$ -- замкнутое множество с полунепрерывной снизу метрической проекцией в конечномерном банаховом пространстве из класса $(\mathrm{BM}) \cup (\mathrm{MS})$. Тогда $M$ -- $B$-ацикличное строгое солнце. Отметим, что Алимов построил пример трехмерного пространства, которое содержит \textrm{LG}-солнце, не являющееся строгим солнцем и не являющееся $B$-солн\-цем. Им также недавно установлено, что для любой конечной размерности $n\ge 3$ существует пространство $X_n$ размерности~$n$, содержащее чебышёвское солнце, не являющееся $B$-солнцем. Такой пример показывает, что множество~$M$ с непрерывной метрической проекцией в~$X_n$, $n\ge 3$, может не быть $B$-солнцем. 4.Пусть $M$ -- $P$-монотонно линейно связное замкнутое множество с полунепрерывной снизу метрической проекцией в конечномерном банаховом пространстве. Тогда $M$ -- солнце и на~$M$ существует непрерывная выборка из метрической проекции. Отметим, что само множество~$M$ в формулировке этого результата может не быть монотонно линейно связным. Поскольку монотонно линейно связное множество в~конечномерном пространстве является солнцем, то~$M$~-- $P$-солнце. Однако $P$-солнце не обязано быть $B$-солнцем. 5. Пусть $M$ -- замкнутое множество с полунепрерывной снизу метрической проекцией в~конечномерном $ (\mathrm{BM}) $-пространстве. Тогда $M$ -- строгое солнце, $B$-стягиваемо, $B$-ретракт и на $M$ существует непрерывная выборка из метрической проекции. 6. Пусть $X\in (\mathrm{RBR})$, $\operatorname{dim} X<\infty$, $M\subset X$~-- строгое солнце (замкнутое множество с полунепрерывной снизу метрической проекцией). Тогда $M$~-- $B$-ретракт, $B$-стягиваемо и на $M$ существует непрерывная выборка из метрической проекции. 7. Получен эффективный аналог теоремы Гильберта о нулях для дифференциальных полей характеристики ноль с несколькими перестановочными между собой дифференцированиями. Первые оценки в общем случае в данной задаче были получены в 2009 г. в работе О.Д.Голубицкого, М.В. Кондратьевой и А. Овчинникова, где оценки сверху были получены в терминах функции Аккермана. | ||
2 | 1 января 2017 г.-31 декабря 2017 г. | Аппроксимативно-геометрические свойства множеств в линейных нормированных пространствах |
Результаты этапа: Найдена верхняя и нижняя оценка старшего коэффициента размерностного многочлена Колчина для линейных систем дифференциальных уравнений в частных производных (обобщение теоремы Безу). Продолжаются исследования по обоснованию устройства глубокой нейронной сети. Получен ряд результатов по цифровой обработке изображений и машинному обучению. Ведение и разработка сайта машинноезрение.рф : выложены авторские материалы (по семинарским занятиям и лекциям). Подготовлены информационные материалы, тесты и эталонные решения задач по 4 темам для 1 и 2 курса в рамках Программы развития МГУ, опубликованы пособия по азам алгоритмики помощью систем ПиктоМир и Кумир, даны качественные оценки эффективности методики обучения элементам информатики в пропедевтическом курсе. Опубликованы учебники по информатике за 7, 8 и 9 классы (авторы Кушниренко А.Г., Леонов А.Г., Зайдельман Я.Н., Тарасова В.В., Дрофа Москва, 180+232+208 стр.). Все три учебника успешно прошли экспертизу. Полученные результаты доложены на 8 российских конференциях. Разработан и поддерживается образовательнй контент и учебный процесс курсов по программированию (http://www.mirera.ru) с реализацией дистанционных автоматизированных практикумов по программированию. Подготовлено новое учебное пособие "Задачи по комбинаторике для лингвистов" (в соавторстве с М. Р. Пентусом). Продолжена поддержка сайта научного журнала "Фундаментальная и прикладная математика". Разработан спецкурс по теории компиляции и основного курса по теоретической информатике для магистратуры мехмата. Ведется персональный сайт преподавателя со всеми учебными материалами. Подготовлены и поддерживаются следующие научно-образовательные сайты: http://dcherukhin.info/teaching/seminars.htm http://osday.ru машинноезрение.рф http://www.mirera.ru http://math.msu.su/~vvb/ | ||
3 | 1 января 2018 г.-31 декабря 2018 г. | Аппроксимативно-геометрические свойства множеств в линейных нормированных пространствах |
Результаты этапа: Разработан спецкурс по теории компиляции и основной курса по теоретической информатике для магистратуры мехмата. Разработаны два спецкурса: "Основы геометрической теории приближения", "Углубленный курс геометрической теории приближения". Ведется персональный сайт преподавателя со всеми учебными материалами. Подготовлены и поддерживаются следующие научно-образовательные сайты: http://dcherukhin.info/teaching/seminars.htm http://osday.ru машинноезрение.рф http://www.mirera.ru http://math.msu.su/~vvb/ Рассмотрены основные и вспомогательные понятия для задач рекомендательных систем (РС), а также описываны основные способы решения этих задач. Рассматриваются как эвристические, так и более современные методы, основанные на матричных разложениях. Помимо теоретических формулировок также приводятся конкретные алгоритмы. При описании методов даются их сравнения, выделяются плюсы и минусы подходов. Реализована РС на основе одного из изложенных в работе подходов, а также успешно внедрена в реальную коммерческую систему. Описываны трудности, возникающие при реализации системы и пути их решения. | ||
4 | 1 января 2019 г.-31 декабря 2019 г. | Аппроксимативно-геометрические свойства множеств в линейных нормированных пространствах |
Результаты этапа: Найдена верхняя и нижняя оценка старшего коэффициента размерностного многочлена Колчина для линейных систем дифференциальных уравнений в частных производных (обобщение теоремы Безу). Продолжены исследования по обоснованию устройства глубокой нейронной сети. Получен ряд результатов по цифровой обработке изображений и машинному обучению. Ведение и разработка сайта машинноезрение.рф : выложены авторские материалы (по семинарским занятиям и лекциям). Подготовлены информационные материалы, тесты и эталонные решения задач по 4 темам для 1 и 2 курса в рамках Программы развития МГУ, опубликованы пособия по азам алгоритмики помощью систем ПиктоМир и Кумир, даны качественные оценки эффективности методики обучения элементам информатики в пропедевтическом курсе. Опубликованы учебники по информатике за 7, 8 и 9 классы (авторы Кушниренко А.Г., Леонов А.Г., Зайдельман Я.Н., Тарасова В.В., Дрофа Москва, 180+232+208 стр.). Все три учебника успешно прошли экспертизу. Полученные результаты доложены на 8 российских конференциях. Разработан и поддерживается образовательнй контент и учебный процесс курсов по программированию (http://www.mirera.ru) с реализацией дистанционных автоматизированных практикумов по программированию. Подготовлено новое учебное пособие "Задачи по комбинаторике для лингвистов" (в соавторстве с М. Р. Пентусом). Продолжена поддержка сайта научного журнала "Фундаментальная и прикладная математика". Разработан спецкурс по теории компиляции и основного курса по теоретической информатике для магистратуры мехмата. Ведется персональный сайт преподавателя со всеми учебными материалами. Подготовлены и поддерживаются следующие научно-образовательные сайты: http://dcherukhin.info/teaching/seminars.htm http://osday.ru машинноезрение.рф http://www.mirera.ru http://math.msu.su/~vvb/ Рассмотрена задача калибровки группы видеокамер как один из этапов локализации и сопровождения целевого объекта. Предложен алгоритм поиска внешних параметров группы камер на основе нескольких существующих подходов. Рассмотрена задача оценки точности при калибровке, рассчитаны оценки абсолютных погрешностей для трех наиболее распространенных алгоритмов поиска фундаментальной матрицы, а также оценка погрешности предложенного алгоритма поиска внешних параметров сети видеокамер. Представлены результаты программной реализации нескольких шагов предложенного алгоритма на синтезированной сцене. Разработана программа для классификации (на основе сверточных нейронных сетей) геопривязанных массивов данных, полученных в результате мульти- и гипер-спектральной съемки растений картофеля с различной интенсивностью хозяйственно-значимых заболеваний (вирусных и оомицетных) и физиологических стрессов, а также RGB-изображений, полученных в результате съемки таких растений с БПЛА. | ||
5 | 1 января 2020 г.-31 декабря 2020 г. | Нейронные сети, теоретические вопросы информатики, приближения и их приложения |
Результаты этапа: Доказана верхняя граница ведущего коэффициента характеристического многочлена градуированного идеала в кольце обобщенных многочленов. Примерами таких колец являются также кольца коммутативных многочленов (для которых справедлива классическая теорема Безу), а также некоторые кольца дифференциальных операторов. Для системы обобщенных однородных уравнений в малых коразмерностях мы получаем точный многочлен в d-оценках. В общем случае оценка является двойной экспоненциальной по $\tau$. Для систем линейных дифференциальных уравнений границы той же асимптотики, но другими методами, были получены ранее Д. Григорьевым в 2005 г. В пространстве $l^\infty_n$ множества с непрерывной (полунепрерывной снизу) метрической проекцией охарактеризованы в терминах аппроксимативно-геометрических свойств их пересечений с координатными гиперплоскостями. Найдена геометрическая характеризация чебышёвских множеств и солнц в трехмерных полиэдральных пространствах с цилиндрической нормой. Охарактеризованы трехмерные пространства, в которых любое замкнутое множество с полунепрерывной снизу метрической проекцией монотонно линейно связно. Показано, что в трехмерных полиэдральных пространствах с цилиндрической нормой замкнутое множество с полунепрерывной снизу метрической проекцией является строгим солнцем. Охарактеризованы конечномерные пространства, в которых всякое замкнутое множество с полунепрерывной снизу метрической проекцией выпукло. Введен вариант исчисления Ламбека, допускающего пустые антецеденты секвенций. В этом варианте используются две связки: левое деление и одноместная модальность, которая встречается только с отрицательной полярностью и разрешает ослабление в антецеденте секвенции. Определяется понятие сети доказательства для этого исчисления, подобное аналогичным сетям для обычного исчисления Ламбека и линейной логики. Доказывается, что произвольная заданная секвенция выводится в рассматриваемом исчислении тогда и только тогда, когда для неё существует сеть доказательства. Тем самым устанавливается критерий для проверки выводимости в этом исчислении в терминах существования графа с определёнными свойствами. При этом размер графа ограничен длиной секвенции. Продолжены исследования по обоснованию структуры глубокой нейронной сети. Получен ряд новых результатов по цифровой обработке изображений и машинному обучению. Были Ведение и разработка сайта машинноезрение.рф : выложены авторские материалы (по семинарским занятиям и лекциям). Развитие информационных технологий сформировало социально-экономический запрос наснижение возраста знакомства детей с программированием. В результате шестилетних усилий удалось разработать и массово внедрить годовой курс программирования для дошкольников, построенный на метафоре программного управления. В процессе развития курса удалось отобрать и сформулироватьнабор основных понятий программирования, который может быть освоен дошкольниками возраста 6+в деятельностно-игровой форме. Этот набор понятий вводится на примерах программ управления дви-жущимися и неподвижными объектами с интуитивно понятными, обозримыми системами команд. Курсстроится на базе беcтекстовой пиктографической системы программирования «ПиктоМир» разработкиФНЦНИИСИРАН. Разработанное для курса программно-методическое наполнение позволяет каждомудошкольнику к концу курса получить опыт составления и отладки 120–150 простейших программ. В пропедевтическом курсе алгоритмики, в рамках которого дошкольники и младшие школьники осваивают основные понятия последовательного программирования, упор делается на составление программ для управления реальными и виртуальными роботами-исполнителями. В основной школе, при переходе на текстовый язык программирования ученики составляют программы в том числе и для управлениятеми же знакомыми им исполнителями. Изучены методы подключения программныхисполнителей, используемых в цифровой образовательной среде текстового программирования, КуМир, кцифровым образовательным средам ПиктоМир (пиктографическое программирование) и ПиктоМир-К (гибридное пиктограммно-текстовое программирование). Описаны некоторые детали реализации механизма подключения роботов-исполнителей, проблемы и методы их решения. Рассмотрены примеры подключенияисполнителей. Рассмотрена задача распознавания табличной структуры по изображению. Постановка проблемы следующая: имеется изображение, на котором запечатлено заведомо неизвестное количество определенных объектов, находящихся в упорядоченной плоской структуре - таблице. На изображение накладываются разумные ограничения на перспективные искажения и повороты. Целью является распознавание заложенной в изображении табличной структуры, то есть расстановка заведомо расположенных в одной плоскости объектов в ячейки таблицы по изображению, или по-другому, табулирование. Исследована задача поиска решения задачи табулирования в условиях отсутствия какой-либо информации о табличной структуре, заложенной в изображении, помимо самого изображения. Результаты работы используются в преподавании курсов программирования на Мехмате МГУ Рассмотрены методы построение объектов дополненной реальности в динами- чески распознаваемой рукотворной среде на примере цифровой образовательной среды ПиктоМир. Подготовлены информационные материалы, тесты и эталонные решения задач по 4 темам для 1 и 2 курса в рамках Программы развития МГУ, опубликованы пособия по азам алгоритмики помощью систем ПиктоМир и Кумир, даны качественные оценки эффективности методики обучения элементам информатики в пропедевтическом курсе. Опубликованы учебники по информатике за 7, 8 и 9 классы (авторы Кушниренко А.Г., Леонов А.Г., Зайдельман Я.Н., Тарасова В.В., Дрофа Москва, 180+232+208 стр.). Все три учебника успешно прошли экспертизу. Полученные результаты доложены на 8 российских конференциях. Разработан и поддерживается образовательнй контент и учебный процесс курсов по программированию (http://www.mirera.ru) с реализацией дистанционных автоматизированных практикумов по программированию. Подготовлено новое учебное пособие "Задачи по комбинаторике для лингвистов" (в соавторстве с М. Р. Пентусом). Продолжена поддержка сайта научного журнала "Фундаментальная и прикладная математика". Разработан спецкурс по теории компиляции и основного курса по теоретической информатике для магистратуры мехмата. Ведется персональный сайт преподавателя со всеми учебными материалами. Подготовлены и поддерживаются следующие научно-образовательные сайты: http://dcherukhin.info/teaching/seminars.htm http://osday.ru машинноезрение.рф http://www.mirera.ru http://math.msu.su/~vvb/ Рассмотрена задача калибровки группы видеокамер как один из этапов локализации и сопровождения целевого объекта. Предложен алгоритм поиска внешних параметров группы камер на основе нескольких существующих подходов. Рассмотрена задача оценки точности при калибровке, рассчитаны оценки абсолютных погрешностей для трех наиболее распространенных алгоритмов поиска фундаментальной матрицы, а также оценка погрешности предложенного алгоритма поиска внешних параметров сети видеокамер. Представлены результаты программной реализации нескольких шагов предложенного алгоритма на синтезированной сцене. Разработана программа для классификации (на основе сверточных нейронных сетей) геопривязанных массивов данных, полученных в результате мульти- и гипер-спектральной съемки растений картофеля с различной интенсивностью хозяйственно-значимых заболеваний (вирусных и оомицетных) и физиологических стрессов, а также RGB-изображений, полученных в результате съемки таких растений с БПЛА. |
Для прикрепления результата сначала выберете тип результата (статьи, книги, ...). После чего введите несколько символов в поле поиска прикрепляемого результата, затем выберете один из предложенных и нажмите кнопку "Добавить".