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Abstract

The problem of the steady motions of a heavy nen-homogeneous dynamically symmetric sphere with a rotor on a
plane with sliding friction is considered. It is supposed, that the axis of a rotor coincides with an axis of dynamical
symmetry of a sphere. Under this assumption the stability of regular precessions of the system is investigated.

Stability and bifurcations of steady motions of a non-homogencous dynamically symmetric sphere (without rotor),
moving along fixed horizontal plane with friction, are completely investigated in-works [1, 2]. The basic results of these
works contain in the monography . [3]. In work [4] the stability of the steady motions of a sphere with fast-rotational
rotor is investigated. Thus, in the present work the research begun in [1, 2, 4] is continued.

1 Formulation of a problem

Let non-homogeneous dynamically symmetric sphere move along fixed horizontal plane under the action of gravity. Let’s assume;]
that a plane is rough, i.e. the reaction of a plane is the sum of the normal reaction and the force of sliding friction. Let’s assume
also, that inside a sphere there is a rotor, which rotates with a constant angular velocity about an axis of dynamical symmetry of a3
sphere. Under these assumptions the equationis of motion of a sphere admite (see, for example, [5]) the non-increasing function -3
total mechanical energy of the system ‘

2H = ‘m,v*2 + Ay (wf +kw’22) + Asw? — 2mgays . (L1)4

i

and two first integrals — generalized Jellett integral

K = Ay (@im +wam) + Ay (ws +0) (13 — €)= k “ (12)3

and geometric integral 3 : "
T=v+7v+4=1 (1.3)3

Here m is the mass of a sphere; A; and As are the principal central moments of inertia of a sphere; g is the acceleration due*
to gravity; o is gyrostatic moment of a rotor referred to the axial moment of inertia of a sphere; € = afr (e € (0, 1)), where a is a
distance from the geometrical centre of a sphere to its centre of mass along the axis of dynamical symmetry, which positive direction;
is chosen such, that @ > 0, r is a radius of a sphere, v;, w;, v4, (i= 1,2, 3) are projections of vectors of velocity v of the centre of
mass of a sphere, the angular velocity w and the unit vector + of ascending vertical onto the principal central axes of inertia of &}
sphere. We denote also the unit vector of an axis of dynamical symmetry of a sphere by e. : '

Geometric integral (1.3) can be considered as configuration space of essential coordinates v € S?, where S? is two-dimensional’
sphere named as Poisson sphere. Thus, the equations of motion of a sphere with a rotor admite non-increasing function (1.1) and?
linear (with respect to quasi-velocities w) first integral (1.2). Hence, steady motions of this mechanical system can be investigated
through modified Routh — Salvadori theory {3]. Taking into account that fact, that integral (1.2) is linear in quasi-velocities, it can’
be shown (see {3, 6]), that investigation of steady motions of a sphere with a rotor is reduced to study of the effective potentiai of the-
system. The effective potential is a minimum of function (1.1) with respect to generalized velocities v; and wy (4= 1,2, 3) at fixed
level of the first integral (1.2). Its critical points on Poisson sphere S determined by geometric integral (1.3) correspond to steady:
motions of the system, and its point of minimum correspond to stable steady motions. §

2 Construction of the effective potential and its analysis
Let W (v) be a minimum of the function H (v, w, ) (function (1.1)) with respect o variables v and w at fixed level of Jellet
integral (1.2): ~
W (y)=minH|,_ =H(vi,w,7),
v,w =
Vi =0,wr = A (y —ce),

A= [k— Aso(ys —€)] [A1 (1 —23) + As (s — &)?] .
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cit form we can write the effective potential as follows:

1 [k—Aso(y— )?
W (y3) = — +3 = mgaf (13)>
(73) mgams + 5 4= T 42) + Aa (s - me {(~3)

In the expli

1 [10—3(’73—5)]2
ORI TR
fo) ="+ 550 ) + (- <)’
_ As _§_1_ }_ _ k-
(s_a,/mga,é—A3€(2+oo),p-—————————,__.l_mga 3).

here S2 in points Px = (1
about its vertically situated axis o

nction W (ny3) have critical values on sp =y =0,73= +1) — poles of
f dynamical symmetry:

It is obvious, that the fu
ent rotations of a sphere

; Poisson sphere, which correspond to perman
4
] Q:t:=(w1=w2=07w24=w:h;'¥1="/2:07’Ya=i1§V=0), (2.1)
b where wx is determined from a condition
k:As(wi-{—a)(:i:l—s).
The stability of steady motions (2.1) was investigated in works {4, 5].
Besides the solutions (2:1) there are also other steady motions determined by relations
Qo= (w; = wey1, w2 = WeY2 W3 = wg(cos — s);'yf 1yl = sin® @,vs = cos v = 0) (2.2)
L where we is determined from a condition
k= [Al sin® @ + As(cosd — 5)2] wp + Asa(cos8 —€),
~ and an angle 8 is determined from the equation df /dé = 0.
The solutions of the equation  df /de = 0 correspond  tO parallels  Ps = (vf 42 =
L = sin? @, ya = cos 0) of Poisson sphere and solutions Qo correspond to regular precessions of a sphere: the sphere rotates with
I constant angular velocity —we€ about its axis of dynamical symmetty, which rotates with constant angular velocity we about the
= vertical and the angle between an axis of dynamical symmetry and vertical is constantly equal 6.
The equation df /d6 = 0 in the explicit form may be written as follows
Gp® - (E+FG)ps+EFs2 —(E-FG)* =0, (2.3)
E =6(1—¢cosf), F=cos—¢, G =¢+(6—1)cosb,
E — FG = §sin® 6 + (cost ~¢)*>0.
The equation (2.3) is squared both with respect to p, and with respect to s. For its solvability with respect 10 P, the inequality
(2.4)

2 4+4G > 0.

L _should be satisfied.
Condition of stability of steady motions (2.2), obtained on the basis of the modified Routh — Salvadori theorem [3], has a form
(6~1)(p—Fs)* +(E~ FG) (s + 4G) =2 0.

Taking into account a condition (2.4) and the fact, that E — FG > 0 (see (2.3)), it is easy o sce, that for & > 1 all the regular
e with a rotor will be stable. Thus, it is necessary 10 investigate the stability of regular precessions of a sphere
when1—6 > 0.

;\ precessions of a sphert
¢ ford < 1. Therefore, further we shall consider the case,

(2.5)

3 The basic conclusions on stability for the case § <1

First of all, let’s solve the equation (2.3) with respect 1o p

(E+FQ)sE(E — FG) V& 4G
- 26

 .and substitute these expressions to the condition of stability (2.5). After substitution we obt

(G* —L)s* +2C (36°-L) 2= (G* + L) s/s? + 4G,

(G*+1L) =(1-38)(E-FG), L=6(1-0-¢).
p—. Weshall denote the corresponding families of re

Px
ain the following inequality

3.1

gular precessions

3 Further we shall distinguish cases, whenp = py andp =
[ by Qg and Q7 .
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curves Io and 1".,.) the area I (is limited to an intercepts of suaxght linese = 0,00 <4 < 61 and0 < & <£1,8 = Jo and curv

0.11

g5 06 07 9, 08 09 & 1

Let’s consider a plane of parametl.%rs of a:sphere (6” €) alnd let’s allocate on this.plane the following areas: the area I (is limited" t
tobeams § = 1 and £ > €3, § = §o and curve ['o); the area I (is limited to an intercept of:a straight line €; < &£ < €9, = dp and " 1

I’} and I'_); the area I'V (is hmlted to an mtercept of SIra1ght line e =0,8 <& <1 4and curve I‘ ) (see figure). Constant values
90, 01, €1 and &2 are equal, respectively e

3 342 1
7€1=

and the curves T'o, ' and ' are dctermmed by the cquauons

T ‘: (5’—'1—8,
l"+ _:_4,__.—(1—5)(7+5)6+3(1
T DA (1) (T -a)5+3(1+“_‘7 L

Detailed analys1s of an mequahty (3 1) allows to make followmg conclusxo ) lhty of steady motlons of a sphere ,

1. In area I for all values s all the regular precessions of a sphere with a yly'otor'( oth the fam1ly Q"r, and famnly Qa ) w1ll b
stable; ; e

2. In area Il precessions Qo are steady for 52 < s2 and unstable for 52 > s,, and plecessmns Qo are stable for all values of §

3. Inarea Il

(a) If cos@ > c*, then precess:ons Qo are unstable for all values of s, and precessions Qo are stable for 82 > s*
unstable for % < s2:

tb) If cos @ < c., then precessxons Qa are stable for:s® < 52 and unstable for s> >.s2, and precessions 0 are stable tor
all values of s;

4. ln area IV precess1ons Qe are unstable for all values of s, and precessmns Qo are stable for 32 > §? and unstable lor
2 .
82 < 82, Co ; ‘ :

%
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the following expressions:
G(G* -3L) + G+ L)VG*+ L
33 = SE (67 & 0) = -—L—_—_——)———_(-L——-_——)—_——’—’

c*=C*(5,E).=m—m-,; e

Here we denote by s3 and c«

Thus, stability of regular precessions of a sphere with a rotor on a plane with friction is completely investigated. The obtained

E results will well be coordinated with known results of works 1,2, 4}.
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