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By the use of absorption spectroscopy, steady-state and time resolved fluorimetry xanthene dyes fluo-
rescein, eosin Y and erythrosin B were shown to form complexes with polycationic fullerene derivative
due to electrostatic interactions in aqueous solution and in the structure of the liposomes. It was found
that the singlet excited states of dyes are effectively quenched either due to excitation energy transfer or
electron transfer from singlet excited state of the dye to the fullerene core. Photodynamic activity of the
complex is much higher than the activity of the dye or the fullerene derivative as the individual com-
pounds. Photostability of the dyes increases in the complex structure as well. These effects allow pre-
dicting the development of a new generation hybrid photosensitizers. Noteworthy, one can use a dye
excited only in a singlet state in combination with fullerene, which greatly enhances the directional
design of such hybrid structures.

Xanthene
Water-soluble fullerene derivative

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Different methods of therapy, based on photodynamic action of
dyes on tumors, cells and bacteria, are used at present [1-3].
Photodynamic action of dyes (usually porphyrins, chlorines and
phthalocyanines) is based on their ability to go to the long-lived
triplet state after photoexcitation. Then energy or electron trans-
fer from triplet exited dye to oxygen molecule leads to generation
of reactive oxygen species (ROS), which destroy biological
structures.

Designing of new photosensitizers with high triplet quantum
yield is an issue of the day not only for photodynamic therapy.
Triplet photosensitizers have very broad application in photovol-
taics [4—6], photopolymerization [7], photocatalysis [8], as lumi-
nescent molecular probes [9—11] and in the triplet-triplet
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annihilation photon upconversion [8,12].

According to requirements of photodynamic therapy photo-
sensitizers also must have solubility in water, high absorption in the
red light region, ability to selectively accumulate in tumor and to be
quickly excreted from the body [1,13]. Because of such contradic-
tory requirements the choice of the dye for practical use in medi-
cine is very limited.

In the last two decades fullerenes and their derivatives attracted
considerable attention as potential photodynamic drugs. Under
photoexcitation they go to the triplet state with a probability close
to unity, and, depending on the polarity of the medium, effectively
generate singlet oxygen 10, or superoxide anion radicals O»*~ and
other active radicals [14—16]. There are a considerable number of
publications on the photodynamic effect of fullerenes and their
derivatives, resulting in DNA, proteins and membranes damage,
killing or slowing growth of tumor cells, viruses and bacteria
[17—27]. Unfortunately, the application of fullerenes and their de-
rivatives for photodynamic therapy in clinical practice is strongly
limited by a weak absorption of fullerenes in the visible (VIS) and
near infrared (NIR) spectral ranges. The short wavelength
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absorptions characteristics of fullerenes are hardly suitable for a
photodynamic therapy since such beams do not penetrate deep
into living tissues.

The efficiency of the photodynamic action of fullerenes can be
greatly enhanced by using hybrid nanostructures (HNS) composed
of fullerene derivatives bearing appended dye molecules absorbing
the light in the VIS and NIR spectral ranges.

The energy redistribution in photoexcited dye—fullerene system
may occur via different pathways:

1) the excitation energy can be transferred from the dye molecule
to the fullerene core or vice versa depending on the energy
levels of these subunits by FRET pathway, for example [28—32].
Moreover, the energy transfer to an intermediate charge trans-
fer state (CT state) also becomes possible if such a CT state is
formed in the system [33,34].

a photoinduced electron transfer (PET) can occur from the
photoexcited dye to fullerene thus producing a charge separated
state (CS state) [32,35—38]. Alternatively, the CS state can be
produced via electron abstraction by the excited fullerene unit
from the dye unit in the ground state.

\S)
—

The formation of the excited fullerene states or the fullerene
radical anion in biological systems initiates a cascade of chemical
reactions producing active molecular and radical species. The
singlet oxygen 'O, or oxygen radical anion Oy~ are the most
common examples. The final effect of such processes is the for-
mation of some active species under the light excitation inducing
local destruction of the tissue.

The design of HNS with optimized structural, photophysical and
redox parameters is a big challenge in the field of photodynamic
therapy.

There are publications that describe the study of fullerene
complexes with dyes, which are soluble in organic solvents
[39—41]. Such structures are mainly synthesized in order to create
organic photovoltaic systems [28,42—46]. It was found that the
fullerene effectively quenched singlet state of dyes in non-polar
solvents [29,47,48], which may lead to the efficient generation of
reactive oxygen species. In some cases, the results of the photo-
dynamic action of such hybrid structures on biological structures
DNA or cells were studied [49—53]. However, in most cases, such
hybrid structures are insoluble in water. There are only limited
publications describing investigations of photodynamic action of
water soluble fullerene-dye structures [54—59].

In this paper, we report the results of studying of the photo-
physical properties and photodynamic activity of HNSs based on
the complexes of xanthene dyes (XD) fluorescein, eosin Y and
erythrosin B with water soluble polycationic fullerene Cgp deriva-
tive (PFD) (Fig. 1). This PFD has high water solubility (more than
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100 mg/ml) due to five positive charges on addends [60]. It is well
known that at neutral pH these xanthene dyes form anions or
dianions in aqueous solution [61,62]. It is natural to assume that
oppositely charged XD and PFD molecules may form complexes in
the solution.

Fluorescein, eosin Y and erythrosin B have singlet excited levels
in the range of 18300—19500 cm ™! and triplet levels in the range of
15150—15900 cm™!, which is significantly higher in comparison to
singlet and triplet levels of fullerene core (16000 cm~! and
12700 cm™!, correspondently [63—65]). As was mentioned above,
in this case in complexes XD-PFD the effective transfer of the
excitation or electron from the XD to the fullerene core can take
place after photoexcitation of the dye. Further transfer of excitation
or electron to molecular O, will lead to the generation of 10, or
0y .

Thus, one can expect the effective generation of the reactive
oxygen species by the fullerene during the excitation of such HNS
by light in the absorption band of the dye.

Since singlet and triplet quantum yields for fluorescein, eosin Y
and erythrosin B are distinguish considerably (Table 1) [7,62,66,67],
it seems interesting to conduct a comparative study of the photo-
physical parameters and photodynamic activity of these XD-PFD
complexes.

This article is devoted to the study of the regularities of the
formation of XD-PFD complexes in aqueous solutions and in the
structure of the liposomes, a comparative study of their photo-
physical properties and photodynamic activity.

2. Experimental
2.1. Reagents

The following reagents were used in the studies: fluorescein,
eosin Y and erythrosin B (Sigma), NADH (nicotinamide adenine
dinucleotide, Sigma), NBT (nitro blue tetrazolium chloride, Sigma),
EDTA (ethylenediamine-tetraacetic acid, Sigma), Tris base (Sigma).
The PFD was synthesized according to the previously reported
procedures [60]. Such PFD have solubility in water greater than
100 mg/ml. The structure of the fullerene derivative was proved by
the methods of IR and UV spectroscopy, 'H and '3C nuclear mag-
netic resonance spectroscopy, and electrospray mass spectrometry.

2.2. Photophysical and photochemical studies

Absorption spectra were recorded on Specord M40 spectro-
photometer equipped with temperature-controlled cuvette sec-
tion. Fluorescence steady-state spectra and fluorescence quantum
yield of the dyes under study were recorded by FLS980 spectrom-
eter (Edinburgh Instruments) and by Cary-Eclipse fluorescence
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Fig. 1. PFD: X = CF3CO0~. Xanthene dyes: R = H fluorescein; R = Br eosin Y; R = I erythrosin B.
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Table 1
A comparison of photophysical properties of xanthene dyes.

Fluorescein Eosin Y Erythrosin B
Fluorescence lifetime in water, ns 36+02 1.04 + 0.01 -
Fluorescence lifetime in water, ns 4.06 [62] 0.9 [69] 0.089 [70]
Shtern-Volmer constant in water, 10° M~ 24 +0.1 33+0.1 53 +0.2
Shtern-Volmer constant in liposomes, 10° M~! 3.28 + 0.05 0.52 + 0.02 0.09 + 0.02
The distance Rg, A 38.0 344 20.0
Triplet quantum yield 0.03 [67] 0.32 [71] 0.97 [7]
Singlet quantum yield 0.93 [62] 0.68 [71] 0.03 [7]
Enhancing coefficient (E.) of photochemical activity for XD-PFD complex in water 104 + 0.2 32+01 1.6 +0.1
Enhancing coefficient (E.) of photochemical activity for XD-PFD complex in liposomes 1.1 £ 0.1 14 +0.1 1.3 +£0.1

spectrophotometer. The kinetics of the fluorescence decay of xan-
thene dyes were recorded on a 16-channel PML-Spec detector with
the use of a time-correlated SPC-530 photon counter (Becker &
Hickl GmbH) with a time resolution of 2.4 ps. The sample was
excited with a picosecond LDH-P-C-470 laser (PicoQuant GmbH)
(A =470 nm, 712 < 300 ps, E = 1 mW). The fluorescence lifetime
was calculated from the exponential approximation in the
maximum of the radiation spectrum.

Phosphatidylcholine liposomes were prepared as described in
Ref. [68], lipid concentration in cuvette was 10~4 M. The photo-
chemical activity (relative amount of the superoxide radicals pro-
duced) of compounds PFD, XD and the XD-PFD complexes were
estimated from the generation of O,*~ using a standard formazan
assay by measuring the evolution of the optical density at 560 nm
as described [16]. The photochemical reaction was performed in a
10 x 10 mm quartz cuvette in a temperature-controlled cell at
20 °C. There were 2 ml of water solution (pH 6.5) which contained
NADH (4-10~% M), NBT (4.8-10~> M), EDTA (2-10~> M), the PFD
compound, and/or XD in a concentration of 2-10~% M in the cuvette.

The cuvette was lighted with a xenon 150 W lamp through a
system of optical filters selecting the 450—550 nm band (Fig. 2,
curve 5). The power of the light illuminating the sample was
44 mW cm2,

3. Results and discussion

3.1. Analysis of photophysical effects at the interaction of PFD with
xanthene dyes in water solution and in the liposomes structure

The photophysical properties of the XD-PFD complexes, which
are formed by introduction into an aqueous solution PFD and XD,
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Fig. 2. Absorption spectra of PFD (1), fluorescein (2), eosin Y (3) and erythrosin B (4) at
a concentration of 2-10-% M in water (pH = 6.5). Filter transparency is also shown (5).

have been investigated. PFD at neutral pH have five positive charges
and xanthene dyes fluorescein, eosin Y, erythrosin B under these
conditions have one or two negative charges [61,62].

Absorption spectra, spectra of steady-state fluorescence and
fluorescence decay kinetics of XD were recorded in the sequential
administration of increasing concentrations of the PFD in the range
of 107 — 10~# M into the cuvette (Figs. 2—5).

Fig. 2 shows the absorption spectra of the PFD, fluorescein, eosin
Y, erythrosin B as well as the transmission spectrum of the optical
filters used for excitation of the sample in the study of photody-
namic action of compounds. When PFD was administered in
increasing concentrations in the range of 5-10~7 — 2-10~% M there
was a shift of the absorption spectrum of the dye to the red region
with a substantial reduction of its absorption, as exemplified for
eosin Y (Fig. 2). Simultaneously intensive stationary fluorescence
decreased until complete quenching, and it was observed without
changing of the decay kinetics of fluorescence (Figs. 4—5). These
experimental facts suggest that the formation of static complexes
XD-PFD take place in the solutions. The shift of the absorption
spectra of XDs in the structure of the complexes in the red region
indicates the effective interaction of electron m-orbitals of the dye
and the fullerene core, and the steady-state fluorescence quenching
— the effective transfer of excitation or electron from the excited
singlet state of the dye to the fullerene. At the same time the
fluorescence intensity and the fluorescence decay time of the free
XD molecules outside the complex remain unchanged. Analysis of
data on the quenching of XD steady-state fluorescence in the
presence of PFD in the Stern-Volmer coordinates (Fig. 6) allows
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Fig. 3. Absorption spectra of eosin Y (2:10~6 M in water): in the absence of a quencher
(1) and in the presence of PFD in concentrations of 0.7-107% (2), 2:1076 (3), calculated
eosin Y spectrum in XD-PFD complex (4).
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Fig. 4. Fluorescence spectra of fluorescein (1), erythrosin B (2) and eosin Y (3) at a
concentration of 2:107% M in water (pH = 6.5). hex = 490 nm (fluorescein), 518 nm
(eosin), 530 nm (erythrosin). In the inset: Fluorescence spectra of eosin Y (2:10~® M in
water): (1) in the absence of a quencher and in the presence of PFD in concentrations
of 48-1077 M, 9.1-10~7 M, 2-10-6 M and 2.86-107% M (2-5).
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Fig. 5. Fluorescence decay profiles for 5-10°% M water solution of eosin Y: in the
absence of a quencher (1); in the presence of the PFD in concentrations 2.4-1077,
91077, 2.6-107% and 5-107% (2—5) in water (pH = 6.5), hex = 518 nm, Aem = 540 nm.

determining the equilibrium constant of the XD-PFD complex
(Table 1) from the linear part of dependence (at the minimal PFD
concentrations). The deviation of Stern-Volmer graphs from the
linear with PFD concentration increasing can be explained by the
formation of large XD-PFD associates.

The evidence of the formation of fullerene associates in aqueous
solution was shown by dynamic light scattering for similar
fullerene derivatives [57]. Another evidence of the formation of
fullerene associates is shown on Fig. 7. Effective quenching of eosin
Y fluorescence is observed when increasing of PFD concentrations
administered sequentially to eosin Y solution. This process is dis-
played in the Stern-Volmer coordinates by a nonlinear dependence
1. Then, the solution with maximal PFD concentration was diluted
successively with water, whereby the concentration of eosin Y and
PFD in the cuvette decreased. This reduces the intensity of the
fluorescence of the sample.

Taking into account the dilution of the fluorophore, the analysis
of this process in the Stern-Volmer coordinates gives a curve 2,
which is significantly different from curve 1 (Fig. 7). If we fix the

concentration of the components in the process of dilution, the
degree of quenching (and thus the association) returned slowly to
the value, which was observed at the elevation of the PFD con-
centration (arrow 3). The inset shows the points corresponding to
maintaining the solution at a given concentration for 15, 22 and
46 h. The observed hysteresis can be explained by the rapid for-
mation of associates with increasing concentration of PFD and their
slow dissociation at lower concentrations.

The nature of the interaction of XD with PFD in the presence of
liposomes varies considerably. As can be seen from Fig. 6B the
shape of Stern-Volmer dependence for dyes in liposomes becomes
considerably more linear, indicating the dissociation of the nano-
structures in liposomes.

From the data on the quenching of steady-state fluorescence,
suggesting that the fluorescence of the XD in the complex is carried
out to zero, it is possible to determine the fraction of free XD
molecules in solution at various concentrations of the PFD. Using
these data of the absorption spectra of samples the absorption
spectrum of the XD in XD-PFD complex can be calculated as shown
for eosin Y-PFD complex (Fig. 3, curve 4). As can be seen from this
curve, the maximum absorption spectrum of eosin Y in the complex
with fullerene is shifted from 517 nm to 527 nm, and the extinction
coefficient  decreases  from  8.03-10* M 'em! to
4,06-10* M~ 'em ™

Taking into account the spectral and donor-acceptor properties
of fullerenes, one can assume two mechanisms of XD fluorescence
quenching in the XD-PFD complex — by the inductive-resonance
dipole-dipole energy transfer and by electron transfer mecha-
nisms. It is known that the inductive-resonant dipole-dipole energy
transfer is carried out in the presence of the overlap of the lumi-
nescence spectra of the donor (XD) and acceptor (PFD). As seen
from Figs. 3 and 4, such an overlap occurs, though the PFD has
rather small absorption in the range of 500—650 nm.

According to the Forster theory [72], in the case of inductive-
resonance dipole-dipole energy transfer the formula

RE =879 x 1075 (Kzn"‘QD](A) ) (Ro in A, if A[nm)) 1)

can be used for the calculation of the Ry value: the distance at which
the fluorescence quenching should take place by 50%. In formula
(1), Qg is the quantum yield of the donor fluorescence in the
absence of acceptor, J(1) is the overlap integral, n is the refractive
index of the solvent, and k is the orientation coefficient depending
on the directions of the dipole moments of the transition. In sys-
tems with the disordered orientations of the dipole moments of the
transition, it is usually assumed that k* = 2/3.

With knowledge of the Ry value and the efficiency of fluores-
cence quenching due to the excitation transfer from the donor to
the acceptor, which is expressed by the ratio Iy/Il, where Iy is the
fluorescence intensity in the absence of the acceptor and I is the
fluorescence intensity in the presence of the acceptor, the formula

(2)

can be used to determine the distance R between the donor and
acceptor.

As was shown from the experimental results, using the formula
(1) with the value Qg of fluorescence quantum yields, listed in
Table 1, and n = 1.33, the Ry values for the investigated pairs XD-
PFD are in the range 20—38 A (Table 1). It was shown from the
experiment that during the formation of the XD-PFD the fluores-
cence intensity of the dyes is decreased almost by 1000 times
(Fig. 4). Using formula (2), it is possible to determine that the
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Fig. 6. The influence of PFD on the fluorescence spectra intensity of erythrosin B (1), eosin Y (2) and fluorescein (3) in Stern-Volmer coordinates in water (A) and in the structure of

liposomes (B). Dye concentration 2-10~ M.
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Fig. 7. Quenching of the eosin Y fluorescence intensity with PFD: gradual addition of
PFD to eosin Y (1); gradual dilution of mixture «eosin Y + PFD» with water (2). In the
inset: change in fluorescence intensity of the solution of «eosin Y + PFD» mixture
taken at points A with a different exposure time (time specified in hours, arrow 3). The
graphs are constructed in the Stern-Volmer coordinates. All compounds were dissolved
in water, pH 6.5.

distance between XD molecule and the fullerene core in the formed
complex is shorter than 7—13 A. This agrees well with the spatial
structure of HNS in which the dye interacts with the fullerene de-
rivative in the places of the charge contacts. They are separated by
hydrocarbon chains containing four chemical bonds (~5—6 A). On
the basis of this, it is possible to assume that the inductive reso-
nance quenching mechanism can be one of the main channels of
the deactivation of XD with the energy transfer to the fullerene
core.

The second mechanism of deactivation of the singlet state of the
dye could be the quenching by electron transfer. According to the
Marcus theory the electron transfer constant between donor and
acceptor ke is determined by formula

2,04

1,64

10 15 20 25 30
[PFD], 10° M

O -
o

AG + 1)
ket = ko exp( ( 4M<BT) ) (3)
where
2
ko — 27VZ (R) 4)
h/4AmwAkgT
Vap(R) = Vpexp (—g 2mH) (5)

In these expressions: ko— preexponential factor, V,, — over-
lapping integral characterizing quantum effect of wave functions
overlapping of the donor and acceptor, 4G — the free energy of the
reaction, A — nuclear energy reorganization, h — Planck’s constant,
kg — Boltzmann constant, H and R — barrier height and the distance
of tunneling [73,74].

According to formulas (3)—(5), ker depends exponentially on the
distance R, the free energy 4G and nuclear energy reorganization A.
Under optimal reaction conditions, to estimate the rate of electron
transfer reaction the formula (6) can be applied

ket = koexp(—aR) (6)

which was obtained as a result of generalization of the electron
transfer data in a various molecular structures, including photo-
excited molecules [75—77]. Here kg = 103 s=!, R — the distance
between the donor and acceptor, a — parameter characterizing the
influence of the environment on the overlap of the donor and
acceptor wave functions overlapping due superexchange interac-
tion. Depending on the type of matrix, separating the donor and
acceptor (saturated hydrocarbon chain, the polypeptide chain,
packed in different ways, water or vacuum), the value o may be
0.9 A~! for saturated hydrocarbon chains, 1.4 A~' for protein
globules, 1.8—2.4 A~! — for the water molecules [78].

It was found that lifetimes of the excited singlet state of the dye
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in the experiment are in the range 0.09—3.6 ns (Table 1). Consid-
ering the fact that fluorescence intensity is about 1000 times
quenched, it can be estimated from equation (6) that the electron
transfer from the excited dye to the fullerene can take place at a
distance of 5.1 A at optimal values of 4G and 1 in 10 ps along the
saturated hydrocarbon chain (¢ = 0.9 A~'). The given result also
corresponds to the proposed structure of the complex.

Thus, the analysis of the dye fluorescence quenching in the
complex indicates that the quenching of the excited singlet state
can occur due to the transfer of excitation or by the mechanism of
electron transfer, which does not allow making an unambiguous
conclusion about the superiority of one of the quenching mecha-
nism. However, in any case, dye fluorescence quenching in the
complex with fullerene derivative means that there is an effective
transfer of excitation or electron to the fullerene core, which should
give fullerene the ability to generate reactive oxygen species.

3.2. Study of photochemical activity of PFD complexes with XD in
aqueous solutions and in the structure of the liposomes

To clarify the pathway of reactive oxygen species (ROS) gener-
ation in aqueous solutions by water-soluble dye-fullerene com-
plexes the comparative efficacy of superoxide radical generation
0,*~ by XD-PFD complexes was investigated using fluorescein,
eosin Y and erythrosin B.

Fig. 8 shows an example of photodynamic activity studies of
eosin Y, PFD and their mixed solution. As can be seen from Fig. 8,
eosin Y and PFD have detectable photodynamic activity upon
photoexcitation in the 450—550 nm region (Fig. 2, curve 5). Taking
into account the difference in the extinction coefficient in the range
of excitation wavelengths, it can be estimated that the photody-
namic activity of PFD in relation to one absorbed quantum exceeds
the similar activity of eosin about 30 times.

Addition of eosin Y to PFD solution in equimolar concentration
resulted in a significant increase of the rate of the photochemical
reaction compared with photodynamic activity of individual com-
pounds. In this case, the reaction rate is 3.2 times greater than the
sum of the individual contributions of these compounds in the
overall response rate (Fig. 8). Obviously, this is due to the interac-
tion of these compounds in solution. Determining from the fluo-
rescence quenching data that only 63% of the dye molecules are in
the complex PFD-eosin Y, and taking into account that extinction
coefficient of the dye in the complex is reduced, it can be estimated
that the relative quantum yield of photochemical reaction Oy~
generation for such complexes is 7.3 times greater than for the
individual dye and 10 times larger than that for the PFD.

Another remarkable effect of the formation of XD-PFD com-
plexes is the increased photostability of dyes. As an example, Fig. 9
shows the dependence of absorption intensity of eosin Y on the
irradiation time in the presence and absence of PFD. Fig. 9 shows
that in a reaction mixture with NADH and EDTA, the absorption
maximum of eosin Y is sharply reduced upon irradiation in the
absorption band of the dye, while in the presence of PFD absorption
reduction is much more slowly.

Table 1 shows a comparison of the relative photochemical ac-
tivity of complexes of PFD with fluorescein, eosin Y and erythrosin B
under identical experimental conditions.

The following formula

E — Dcomplex - Dcuntrol (7)
(DPFD - Dcontrol) + (Ddye - Dcontrol)

was used to calculate enhancing coefficient E. of the relative
photochemical activity of the XD-PFD complex in water and in
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Fig. 8. Kinetics of O,~ formation as a result of the photochemical reaction under
visible light irradiation in the range of 450—550 nm. The data points were obtained by
monitoring the changes in the optical density AD of the solution at 560 nm (the for-
mazan absorption band maximum) and plotted as a function of the irradiation time:
control (1), sensitization with eosin Y (2), sensitization with PFD (3), sensitization with
eosin Y + PFD (4). All compounds are at a concentration of 2-10~® M in water (pH 6.5).

liposomes, were index D is a pADsgg for studied compounds after
5 min of photoirradiation. Table 1 shows that the photochemical
activity of these complexes is decreased in a line of
fluorescein > eosin Y > erythrosin B. Taking into account that
quantum yields for singlet state fluorescein, eosin Y and erythrosin
B are 0.93, 0.68 and 0.03, respectively, one can conclude that the
main role in the photochemical processes are playing exactly the
singlet excited states of the dyes. Similar effect was described for
non-covalent fullerene-dye complexes and covalent dyads in non-
polar solvents [29,39—-41,47,48,79], but for aqueous solutions it
hasn't been reported before, to our best knowledge.

It may be supposed, that low E, values for XD-PFD complexes in
liposomes (Table 1) are related to dissociation of XD-PFD complexes
due to pronounced membranotropic properties of water-soluble
fullerene derivatives [80]. Given results are in a good agreement
with Stern-Volmer dependences for XD-PFD complexes in water
and liposomes (Fig. 6A and B).
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Fig. 9. Changes in absorption of eosin Y in the presence of various compounds: eosin Y
(21075 M) (1); eosin Y (2-10- M) + PFD (2106 M) (2); eosin Y (2-:10~% M) + EDTA
(21075 M) + NADH (4-10~% M) (3); eosin Y (2-10~% M) + PFD (2:10~% M) + EDTA
(2-107 M) + NADH (4-10~* M) (4). All compounds were dissolved in Tris-HCI buffer
(0.01 M; pH 7.4).
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4. Conclusion

Thus, based on the obtained experimental data, it can be
concluded that polycationic fullerene derivative and xanthene dyes
formed strong complexes in aqueous solution. Observed photody-
namic activity such complexes significantly exceed one of individ-
ual molecules PFD and dyes upon photoexcitation complexes at the
dye absorption band.

Analysis of the fluorescence quenching effect of fluorescein,
eosin Y and erythrosin B in the complex with the PFD shows that
the quenching of the excited singlet state of these xanthene dyes
can occur due to the transfer of excitation or by the electron
transfer mechanism, which gives to fullerene the ability to generate
reactive oxygen species.

It is usually assumed that eosin Y and other dyes generate
reactive oxygen species due to the energy or electron transfer from
the triplet levels of dyes. In the present work it has been shown that
the fullerene core in the complex structure allows transforming the
singlet excitation of the dye in generation of reactive oxygen spe-
cies with high efficiency.

The creation of such hybrid nanostructures based on fullerenes
and dyes that absorb in the visible region of the spectrum may be
promising in terms of creating new and effective photosensitizers
for use in medicine and photocatalysis.
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