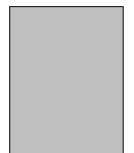
ФМИ № 08 2017:	№корректуры:	Дата	Подпись:
	Число ошибок:	Кол-во стр. 5	Ермаков
№вёрстка 1	Верстал: Четина		
	14.09.2017		



Захарова Татьяна Валерьевна

Кандидат физико-математических наук, доцент кафедры математической статистики факультета ВМК МГУ имени М. В. Ломоносова.

Геометрическая модель вероятности

Статья является продолжением темы преподавания теории вероятностей в школе и подготовки учащихся к решению вероятностных задач Единого государственного экзамена.

В статье подробно разобраны типовые задачи по теории вероятностей, в которых используется геометрическое определение вероятности. Напомним это определение.

Геометрическое определение вероятности

В случае, когда число исходов случайного эксперимента можно сосчитать, используется классическое определение вероятности (классическая модель). Если же число исходов не поддаётся пересчёту, то пользуются другими определениями вероятности.

Рассмотрим случай, когда Ω — множество всевозможных исходов случайного эксперимента — является геометрической фигурой с площадью S_{Ω} . И пусть геометрическая фигура A, являющаяся некоторым подмножеством Ω , имеет площадь S_A . В этом случае A называется событи-

ем, и его вероятность определяется как отношение площадей фигур A и Ω , т.е.

$$P(A) = \frac{S_A}{S_{\Omega}}.$$

Такое определение вероятности называют *геометрическим* и соответствующую модель эксперимента называют геометрической моделью.

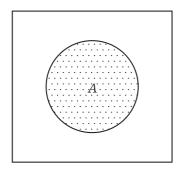
Отметим, что при так заданной формуле расчёта вероятности события с одинаковой площадью имеют одну и ту же вероятность.

Пример. Из квадрата со стороной 4 наугад выбирается точка. Какова вероятность события *A* (точка на-

ходится на расстоянии не более чем 1 от центра квадрата)?

Решение. Здесь возможным исходом является любая точка квадрата. Площадь квадрата равна 16.

Благоприятным исходом события A является точка круга с радиусом 1 и с центром совпадающим с центром квадрата. Площадь этого круга равна π .



Puc. 1

Рисунок 1 содержит квадрат Ω и благоприятное событие A. Теперь можно вычислить вероятность заданного события A по формуле

$$P(A) = \frac{S_A}{S_{\Omega}} = \frac{\pi}{16}.$$

Замечание. В геометрических моделях вероятность можно определить и как отношение объёмов фигур, если исход эксперимента принадлежит некоторому ограниченному множеству пространства, и как отношение длин отрезков прямой \mathbb{R}^1 в соответствующем случае.

Перейдём к рассмотрению задач.

Задача 1. Из круга с центром в начале координат (0;0) наугад выбирается точка. Какова вероятность события A (выбранная точка лежит в 1-ой четверти декартовой системы координат)?

Решение. В данной задаче применима геометрическая модель вероятности, т.к. элементарным событием

является любая точка, которая выбирается случайным образом из круга.

Площадь круга обозначим через S. Благоприятным исходом является сектор круга из 1-й четверти декартовой системы координат. Его площадь S/4. Значит,

$$P(A) = \frac{S/4}{S} = 0.25.$$

Задача 2. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 6, но не дойдя до отметки 9.

Решение. Часовая стрелка в работающих часах описывает окружность в 360° и при поломке часов может остановиться на любой точке окружности. Таких точек бесконечно много, поэтому применим геометрическую модель вероятности. Здесь достоверным событием Ω является окружность с длиной 360° .

Определим событие A (часовая стрелка при поломке часов достигла отметки 6, но не дошла до отметки 9).

Длина дуги окружности между отметками 6 и 9, то есть длина события A, составляет 90° . Значит,

$$P(A) = \frac{90^{\circ}}{360^{\circ}} = 0.25.$$

Задача 3. Пассажир хочет воспользоваться автобусом определенного маршрута. Известно, автобусы этого маршрута приходят на остановку с интервалом в 15 минут. Какова вероятность события *A* (пассажир будет ждать автобус не более 3 минут)?

Решение. Элементарным событием, то есть исходом эксперимента задачи является время прихода пассажира на остановку, отсчитываемое от отъехавшего перед ним автобуса. Эта величина может принимать любое

Χ

значение от 0 до 15 минут, поэтому достоверным событием в данном случае является $\Omega = [1,15]$. Событие A осуществится, если пассажир будет ждать автобус не более 3 минут. Благоприятным событием для A будет любая точка из отрезка [12,15], это означает, что пассажир пришёл не раньше, чем через 12 минут после отъехавшего автобуса.

Длина Ω равна 15, а длина события A равна 3. Следовательно,

$$P(A) = \frac{3}{15} = 0.2.$$

Следующая широко известная задача называется задачей о встрече.

Задача 4. Двое договорились встретиться между 11 и 12 часами утра в условленном месте. Пришедший первым ждёт второго. Если второй не придет в течение 10 минут, то первый уходит. Считая, что момент прихода на встречу выбирается каждым наугад в пределах указанного часа, найти вероятность того, что встреча состоится.

Решение. Исходом эксперимента задачи являются моменты прихода каждого на встречу. Обозначим эти моменты времени через ω_1 и ω_2 . Ясно, что $11 \le \omega_1 \le 12$ и $11 \le \omega_1 \le 12$. Поэтому достоверным событием Ω в данном случае является квадрат со стороной длины 1.

$$\Omega = \{ \omega = (\omega_1, \omega_2) : \omega 1, \omega 2 \in [11, 12] \}.$$

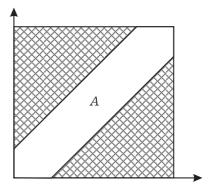
Площадь Ω равна

$$S_{\Omega} = (12-11)(12-11) = 1.$$

По условию задачи встреча состоится, если время между моментами прихода первого и второго лица не больше 10 минут, то есть

$$A = \{\omega : \left| \omega_1 - \omega_2 \right| \le \frac{1}{6} \text{ uaca} \}.$$

На рисунке 2 изображён квадрат Ω . Выделенная на нём белая область



Puc. 2

является геометрическим местом точек события A.

Площадь множества A найдём, вычитая из площади квадрата площадь заштрихованных треугольников.

$$S_A = 1 - 2 \cdot \frac{1}{2} \bigg(1 - \frac{1}{6} \bigg) \bigg(1 - \frac{1}{6} \bigg) = 1 - \frac{25}{36} = \frac{11}{36}.$$

Рассчитаем искомую вероятность

$$P(A) = \frac{11/36}{1} = \frac{11}{36}$$

Задача 5. Из отрезка [0,1] наугад выбираются две точки. Найти вероятность того, что вторая точка окажется меньше первой.

Решение. Координату первой точки обозначим через x, а второй – через y. Найдём вероятность события $A = \{y < x\}$. Для этого введём декартову систему координат с осями OX и OY и изобразим на ней множества благоприятных исходов и всевозможных исходов эксперимента.

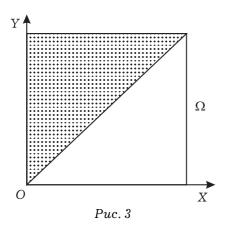
Как легко видеть, достоверным событием Ω в данном случае является квадрат $[0,1] \times [0,1]$. Событие $A = \{y < x\}$ представляет собой нижний треугольник квадрата Ω .

Рассчитаем площади фигур:

$$S_{\Omega}=1,~S_{A}=\frac{1}{2}.$$
 Следовательно,

$$P(A) = \frac{1/2}{1} = \frac{1}{2}.$$

Несколько усложним предыдущую задачу.



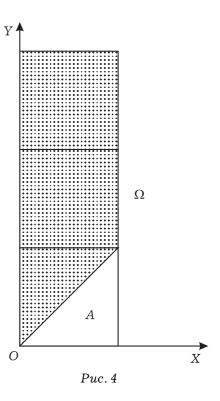
Задача 6. Из отрезка [0,1] наугад выбирается точка X и из отрезка [0,3] наугад выбирается точка Y. Найти вероятность того, что точка Y окажется левее точки X.

Решение. Координату точки X обозначим через x, а точки Y – через y. По условию задачи требуется найти вероятность события $A = \{y < x\}$.

Аналогично задаче 5 отобразим Ω и A в декартовой системе координат OXY.

Достоверным событием Ω в данном случае является прямоугольник $[0,1]\times[0,3]$. Событие A представляет собой белый треугольник на рисунке.

Площади фигур Ω и A равны соответственно $S_\Omega=3,\ S_A=\frac{1}{2}.$



Следовательно,
$$P(A) = \frac{1/2}{3} = \frac{1}{6}$$
.

Замечание. Геометрическая модель вероятности обобщает понятие вероятности в случае бесконечного числа исходов случайного эксперимента, что важно для практических задач. Но такую модель можно применять только при выполнении условия равновероятности событий одинаковой меры.

Задачи для самостоятельной работы

Задача 1. Из круга с центром в начале координат (0;0) наугад выбирается точка. Какова вероятность события *A* (выбранная точка лежит ниже оси абсцисс)? Ответ: 1/2.

Задача 2. Из квадрата со стороной 4 наугад выбирается точка B. Какова вероятность события A (pac-

стояние от точки B до ближайшей стороны квадрата не превосходит 1)? Ответ: 3/4.

Задача 3. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что минутная стрелка останови-

лась после отметки 11, но не дойдя до отметки 3. Ответ: 1/3.

Задача 4. Двое друзей, Олег и Пётр, договорились встретиться между 11 и 12 часами утра в условленном месте. Если Олег придёт первым, то он ждёт друга 15 минут, затем уходит. Если же первым придёт Пётр, то он ждёт Олега 20 минут, а затем уходит. Считая, что момент прихода на встречу выбирается каждым наугад в пределах указанного часа, найти вероятность того, что встреча друзей состоится. Ответ: 143/288.

Задача 5. Пассажир может воспользоваться автобусами двух маршрутов, следующих с интервалами 10 и 15 минут. Момент прихода пассажиром на остановку выбран наугад. Найти вероятность события A (пассажир будет ждать на остановке не более 5 минут)? Ответ: 2/3.

Задача 6. Из отрезка [0,10] наугад выбирается точка, обозначим её координату за x. Найти вероятность того, что длины отрезков [0, x] и [x, 10] отличаются не более, чем на 4. Ответ: 0,4.

Задача 7. Из отрезка [0,4] наугад выбираются две точки X и Y с координатами x и y соответственно. Найти вероятность события $\{x>2y\}$. Ответ: 1/4.

Задача 8. На окружности наугад выбираются три точки *A*, *B*, *C*. Найти вероятность того, что треугольник *ABC* окажется остроугольным. Ответ: 1/4.

Литература

- $1.\ 3axaposa\ T.B.\ 3$ адачи по теории вероятностей с решениями. Учебное пособие для школьников. 4-е издание. М.: «Альтекс», 2017.-64 с.
- 2. $3axaposa\ T.B$. Элементарные основы теории вероятностей // Потенциал, 2017, № 5, с. 30-40.