ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2014, том 59, № 11, с. 1462–1471

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.41+546.185+617+666.3+666.1+666.9

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ ТРИКАЛЬЦИЕВЫЙ ФОСФАТ–СМЕШАННЫЙ ФОСФАТ КАЛЬЦИЯ И НАТРИЯ (КАЛИЯ)

© 2014 г. П. В. Евдокимов^{*}, В. И. Путляев^{*}, В. К. Иванов^{*, **}, А. В. Гаршев^{*}, Т. Б. Шаталова^{*}, Н. К. Орлов^{*}, Е. С. Климашина^{*}, Т. В. Сафронова^{*}

> *Московский государственный университет им. М.В. Ломоносова **Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва E-mail: pavel.evdokimov@gmail.com

> > Поступила в редакцию 23.05.2014 г.

Фазовые равновесия в квазибинарных разрезах $Ca_3(PO_4)_2$ — $CaMPO_4$ (M = Na, K) характеризуются высокотемпературным изоморфизмом глазеритоподобных фаз α' - $Ca_3(PO_4)_2$ и α - $CaMPO_4$. Основные отличия системы $Ca_3(PO_4)_2$ — $CaKPO_4$ от $Ca_3(PO_4)_2$ — $CaNaPO_4$ заключаются в смещении нонвариантных равновесий в область высоких температур, замедлении фазовых превращений и появлении полиморфизма у промежуточной фазы упорядоченного твердого раствора на основе α -CaKPO₄. Низкотемпературная модификация этой фазы вблизи состава $Ca_8K_2(PO_4)_6$ имеет структуру апатита с незаполненными гексагональными каналами.

DOI: 10.7868/S0044457X14110087

Одним из важных направлений современного неорганического материаловедения является разработка биоматериалов на основе фосфатов кальция для замены или лечения поврежденной костной ткани. В идеальном случае имплантат должен постепенно растворяться в среде организма, выполняя при этом свои опорные функции, а на его месте — формироваться новая костная ткань. В этой связи ключевой характеристикой материала является его способность резорбироваться, т.е. растворяться в среде организма. Традиционно применяемый гидроксиапатит (ГА) $Ca_{10}(PO_4)_6(OH)_2$ обладает наименьшей среди фосфатов кальция растворимостью [1].

Необходимым элементом стратегии улучшения растворимости соединения с ионным характером химической связи является понижение энергии кристаллической решетки. Последовательная реализация этого подхода приводит к двум направлениям повышения резорбции кальцийфосфатных материалов. 1. Переход к фосфатам кальция с меньшим, чем у ГА, отношением Ca/P (так, переход от ГА с Ca/P = 1.67 к трикальциевому фосфату (**ТКФ**) β -Ca₃(PO₄)₂ c Ca/P = 1.5 приводит к увеличению растворимости почти на порядок). 2. Модификация химического состава, связанная с заменой катиона Ca²⁺ в структуре фосфата, например ТКФ, на однозарядный катион щелочного металла; при этом по мере замещения происходит смена структурного типа β -ТК $\Phi \rightarrow$ $\rightarrow \beta$ -CaMPO₄ (ренанит).

Настоящая работа нацелена на использование смешанных фосфатов кальция и щелочных металлов с общей формулой $Ca_{3-x}M_{2x}(PO_4)_2$ (x = 0-1, M = Na, K) со структурой ТКФ и CaMPO₄ в качестве резорбируемой биокерамики.

Следует отметить, что похожая проблема – переработка плохо растворимых фосфоритов в усваиваемые растениями формы фосфатов – возникала ранее в технологии фосфорных удобрений. Возможным решением является термическая переработка фосфоритов, реализованная в виде Ренани-процесса – обжига фосфоритов с карбонатами щелочных металлов и кремнеземом. Одним из продуктов такого процесса является ренанит СаМРО₄. Основные экспериментальные усилия по анализу фазовых равновесий и кристаллохимии фаз в системах $M_2O-CaO-P_2O_5$ (M = Na, K) [2-5], среди которых следует отметить фундаментальную работу Бредига [6], пришлись на 50-80-е годы прошлого века. Анализ указанных экспериментальных результатов позволил заключить, что необходима ревизия фазовых отношений в квазибинарном разрезе $Ca_3(PO_4)_2$ -CaNaPO₄ и построение фазовой диаграммы Са₃(РО₄)₂-СаКРО₄, данных относительно которой, по нашим сведениям, не существует до сих пор. Кроме того, имея в виду использование смешанных фосфатов кальция и щелочных металлов в качестве биокерамики, необходимо иметь ясное представление о структурных особенностях фаз, составляющих указанные системы, и их полиморфизме. К сожалению, сведения подобного рода, в особенности,

относящиеся к К-содержащей системе, отрывочны и весьма противоречивы. Перечисленные выше аспекты химии смешанных фосфатов кальция и щелочных металлов и стали предметом данной работы.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для синтеза были выбраны следующие схемы получения двойных фосфатов:

$$Ca_2P_2O_7 + (1-x)CaCO_3 + xM_2CO_3 \rightarrow \rightarrow Ca_{3-x}M_{2x}(PO_4)_2 + CO_2\uparrow,$$
(1)

$$Ca_{2}P_{2}O_{7} + (1 - x)CaCO_{3} + 2xMCl + H_{2}O \rightarrow \rightarrow Ca_{3 - x}M_{2x}(PO_{4})_{2} + 2HCl\uparrow + CO_{2}\uparrow,$$
(2)

где M = Na, K; x = 0-1.

Помол шихты проводили в шаровой мельнице планетарного типа Pulverisette (Fritsch, Германия) в среде ацетона. Измельченную шихту протирали через полиэфирное сито Saatilene HiTechTM с размером ячеек ~200 мкм, засыпали в алундовый тигель и обжигали в интервале температур 800– 1100°С (продолжительность до 12 ч). Для последующего формирования керамических таблеток в полученные в результате обжига дезагрегированные порошки вводили пластификатор (парафин, 10% по массе порошка). Из пресс-порошка формовали таблетки путем одноосного одностороннего прессования на ручном прессе Carver C (США) при давлении ~200 МПа, а затем спекали их при температуре 1200°С.

Рентгенографические высокотемпературные эксперименты (**Т-РФА**) в интервале $50-1350^{\circ}$ С проводили in situ с использованием приставки HT-1500 на дифрактометре с вращающимся анодом Rigaku D/MAX 2500 (Rigaku, Япония). Съемку проводили в геометрии Брэгга–Брентано с использованием Си K_{cp} -излучения ($\lambda = 1.54183$ Å) в платиновой кювете. Параметры работы генератора: ускоряющее напряжение 40 кВ, ток трубки 200 мА. Профильный анализ спектров и определение значений параметров решетки осуществляли с помощью программы WinXPOW (Stoe GmbH).

Количественный состав смеси определяли с использованием как градуировочной функции при использовании свободных от наложения аналитических дифракционных пиков, так и корундового числа I/I_c по методу Чанга [7]. При известных величинах корундового числа получаем, что $\Sigma \omega_k = 1, k = 1, 2, 3 \dots$, где ω_k – соответствующие весовые доли компонентов. Весовая доля вычисляется по формуле:

$$\omega_{\rm A} = \frac{I_{i\rm A} / (I/I_{\rm c}({\rm A})I_{i\rm A}^{\rm rel})}{\sum_{k} I_{i\rm K} / (I/I_{\rm c}({\rm K})I_{i\rm K}^{\rm rel})},$$
(3)

где I_{iA} – измеренная интенсивность для *i*-го рефлекса фазы A; I_{iA}^{rel} – относительная интенсивность этого рефлекса в базе данных; $I/I_c(A)$ – корундовое число для определяемой фазы A; I_{jK} , I_{iK}^{rel} , $I/I_c(K)$ – соответствующие величины для всех (включая A) компонентов смеси.

Дифференциальный термический (ДТА) и термогравиметрический (ТГ) анализ образцов осуществляли с использованием синхронного термоанализатора с вертикальной загрузкой образцов STA 409 PC Luxx (Netzsch, Германия). Измерения проводили в воздушной атмосфере в интервале температур от комнатной до 1480°С со скоростью нагревания 5–50 град/мин. Навески образцов составляли до 130 мг. Для проведения эксперимента использовали алундовые тигли.

Линейную усадку прессованных образцов измеряли в политермическом режиме до t = 1400°C со скоростью нагревания 5 град/мин в горизонтальном дилатометре DIL 402 C (Netzsch, Германия).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выбор условий синтеза порошкообразных образцов

Термолиз хлорида щелочного металла и выделение паров хлороводорода (реакция (2)) были подтверждены ТГ-экспериментами с ИК-анализом выделяющихся газов (характерный пик колебаний молекулы HCl при 3000 см⁻¹). Термодинамика реакций (1) и (2) обусловлена как энтальпийным фактором (образование смешанного ортофосфата – соединения с большей энергией кристаллической решетки по сравнению с пирофосфатом кальция, поскольку ортофосфат – более компактный анион), так и энтропийным фактором (протекание реакций связано с увеличением числа молей газообразных продуктов).

По данным ТГ с различными скоростями нагревания и с использованием двух различных моделей (Озавы-Флинна-Уолла и Вязовкина [8-10]), энергия активации реакции (1) образования ренанита (точнее, ее низкотемпературной стадии, до 660°С) была оценена как 90 ± 10 кДж/моль. Подобное невысокое значение энергии активации свидетельствует, по-видимому, о том, что в смысле лимитирующего процесса реакция находится в промежуточном режиме и кинетического (реакция на границе раздела фаз), и диффузионного контроля. Начало реакций (1) и (2) (~600°С в случае карбоната, ~750°С для хлорида) лежит в температурной области, предшествующей плавлению соответствующего натриевого прекурсора, т.е. начальная стадия реакций (1) и (2), видимо, имеет твердофазный характер. Изменение степени гомогенности порошка (помол на шаровой мельнице планетарного типа для достижения большей дисперсности и лучшего перемешивания) смещает окончание ре-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 11 2014

Рис. 1. Сравнение данных РФА для низкотемпературной модификации β-CaNaPO₄ и высокотемпературной α-CaNaPO₄.

акции в область более низких температур. В частности, применение планетарной шаровой мельницы для измельчения смеси реагентов позволило уменьшить средние размеры частиц исходных смесей до 7 мкм. Вследствие этого температура завершения реакций значительно снижается (до 680 и 790°С для Na₂CO₃ и NaCl соответственно).

Следует отметить, что образование ренанита начинается при более низкой температуре (состав при x = 1), чем реакция образования трикальциевого фосфата (состав при x = 0). Поскольку перестройка кристаллической решетки пирофосфата кальция в реакциях $Ca_2P_2O_7 + Na_2CO_3 = 2CaNaPO_4 + CO_2 и$ $Ca_2P_2O_7 + CaCO_3 = Ca_3(PO_4)_2$ достаточно кардинальна и требует разрыва связи Р-О в пирофосфат-ионе и затем удаления друг от друга образовавшихся ортофосфат-ионов, то различие в температурах начала и прохождения реакций отражает, по-видимому, различие в диффузионной подвижности ионов Na⁺ и Ca²⁺. Это, в свою очередь, позволяет представить схему обеих реакций как диффузию ионов Na⁺, Ca²⁺ и O²⁻ в частицу пирофосфата кальция через слой продукта.

В результате изотермических экспериментов установлено, что температуру получения β -CaNaPO₄ можно снизить до 600°С (время проведения реакции 4 ч). При этой температуре происходит потеря массы, соответствующая теоретически рассчитанной, что связано с полным удалением углекислого газа при разложении карбоната натрия, который, в свою очередь, не может разлагаться при данной температуре иначе, как в результате протекания реакции (1). Таким образом, медленное нагревание реакционных смесей разрешает проводить процесс в присутствии минимального количества расплава (и, возможно, даже в твердофазном режиме). Обжиг при 900°С в течение 4 ч гарантированно позволяет получить однофазный ТКФ или ренанит даже без повторных измельчения и обжига реакционной смеси.

Полиморфизм $Ca_3(PO_4)_2$

В цитированных в данной работе источниках существуют разногласия относительно числа полиморфных модификаций фазы ТКФ. Согласно нашим данным [11], переход $\beta \rightarrow \alpha$ -ТКФ является заторможенным реконструктивным переходом 1-го рода с $\Delta H = 6.8$ кДж/моль и $\Delta V/V = +4.5\%$; превращение начинается при 1183°С, для его полного протекания требуется обжиг при 1400°С в течение ~1 ч. При обратном переходе величины переохлаждения могут превышать 300°С. Это позволяет получать высокотемпературную фазу α -Ca₃(PO₄)₂ даже при не слишком быстром охлаждении (порядка 5 град/мин). Переход $\alpha \rightarrow \alpha'$ -ТКФ относится к быстрым деформационным переходам 1-го рода с $\Delta H = 10.73$ кДж/моль; переход начинается при 1455°С и обладает малой величиной температурного гистерезиса $\Delta t = 20^{\circ}$ С. Это исключает возможность получения α' -Ca₃(PO₄)₂ даже при закалке.

Полиморфизм CaNaPO₄

Для CaNaPO₄ известны две модификации [5]: высокотемпературная α -CaNaPO₄ и низкотемпературная β -CaNaPO₄ с температурой перехода $t = 690^{\circ}$ C. Данные РФА для фаз α -CaNaPO₄ и β -CaNaPO₄ приведены на рис. 1.

Рентгенометрические данные для α -CaNaPO₄ были сопоставлены с известной рентгенограммой № 74-1950 для этой фазы в базе данных ICDD PDF-2, полученной Бредигом [6]. Наши рентгенометрические данные фиксируют большее по сравнению с [6] количество рефлексов, которые полностью индицируются в рамках гексагональной сингонии (предполагаемая пр. гр. $P\overline{3}m1$), согласно [6], с параметрами элементарной ячейки a = 5.23, c = 7.24 Å.

Изучение полиморфного превращения с использованием ДТА проводили по методике, описанной в [11]. По данным ДТА (рис. 2), температура перехода $\beta \rightarrow \alpha$ -CaNaPO₄ составляет 670°С. Данный переход сопровождается резким эндотермическим эффектом при нагревании, практически равным по энергии ($\Delta H_{\beta/\alpha} = 8.22 \pm 0.16$ кДж/моль) экзотермическому эффекту, связанному с переходом $\alpha \rightarrow \beta$ -CaNaPO₄ при охлаждении ($\Delta H_{\alpha/\beta} = 8.06 \pm 0.16$ кДж/моль); температурный гистерезис составляет $\Delta t = 10^{\circ}$ С. По данным дилатометрии, переход $\beta \rightarrow \alpha$ -CaNaPO₄ сопровождается положительным объемным эффектом $\Delta V/V = +6\%$;

Рис. 2. Данные ДТА для CaNaPO₄ (два сегмента нагрева и два сегмента охлаждения).

высокотемпературная рентгенография дает сходную оценку $\Delta V/V = +5.6\%$ [12].

Фазовая диаграмма системы Ca₃(PO₄)₂-CaNaPO₄

Для проверки границ фазовых полей фазовой диаграммы системы $Ca_3(PO_4)_2$ — $CaNaPO_4$ [2] был использован метод ДТА. Прохождение фазовых границ при нагревании сопровождается эндотермическим процессом; поскольку энергия эффекта прямо пропорциональна количеству вещества, то для усиления проявления данных процессов в ходе термического анализа брали максимально возможную навеску смесей для используемого нами прибора (около 130 мг). Данные ДТА были сопоставлены (рис. 3) с известными из литературы фазовыми диаграммами $Ca_3(PO_4)_2$ — $CaNaPO_4$; наши данные наиболее близки к результатам [3].

Для уточнения состава фазовых полей системы $Ca_3(PO_4)_2$ -CaNaPO₄ был проведен высокотемпературный рентгенофазовый анализ на смесях $(1 - x)Ca_3(PO_4)_2 + xCaNaPO_4 (x = 0.3, 0.4, 0.6 и$ 1.0). Результаты, полученные в ходе Т-РФА, подтверждают данные ДТА и согласуются с данными [3] (рис. 3). По данным Т-РФА были также подтверждены определенные методом ДТА температуры фазовых превращений в исследованных смесях.

Границу области гомогенности фазы β -Са₃(PO₄)₂ можно оценить на основании измерения зависимости параметров элементарной ячейки Са_{3-x}Na_{2x}(PO₄)₂ от состава как $x = 0.15 \pm 0.05$.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 11 2014

Отметим, что рассматриваемый в литературе состав $Ca_{10}Na(PO_4)_7$ [13] лежит внутри этой области, но не является граничным.

Для уточнения области существования фазы А были детально исследованы смеси $(1 - x)Ca_3(PO_4)_2 +$ $+ x CaNaPO_4$ (x = 0.3, 0.4). В ходе Т-РФА были получены рентгенограммы в области температур существования фазы А, которые были выбраны по литературным данным [6, 14], а также с использованием данных ДТА. Можно видеть, что рентгенограмма фазы А в основном совпадает с рентгенограммой α-CaNaPO₄ (рис. 4), за исключением наличия дополнительных линий, которые можно приписать появлению сверхструктуры при упорядочении твердого раствора на основе α -CaNaPO₄. В отличие от известных данных [6, 15] мы получили рентгенограмму (рис. 4) чистой фазы А, что подтверждается совпадением рентгенограмм для разных составов (x = 0.3, 0.4) в области температур существования фазы А. Параметры элементарной ячейки данной фазы при различных температурах и составах приведены в табл. 1. Фазу А можно опи-

Таблица 1. Параметры элементарной ячейки фазы A при разных температурах и составах с параметрами высокотемпературной фазы α-CaNaPO₄

$\operatorname{Ca}_{3-x}\operatorname{Na}_{2x}(\operatorname{PO}_4)_2$	<i>a</i> , Å	<i>c</i> , Å	V, Å ³
$x = 0.4; t = 1100^{\circ}$ C	10.750(2)	22.598(3)	2261.6(8)
$x = 0.3; t = 1200^{\circ} \text{C}$	10.736(2)	22.681(5)	2264.0(1)
$x = 0.4; t = 1200^{\circ} C$	5.383(2)	7.569(2)	190.1(1)

Рис. 3. Фазовая диаграмма системы Ca₃(PO₄)₂-CaNaPO₄ [2] с нанесенными данными ДТА (кружки) и Т-РФА (отрезки, обозначающие температурный диапазон, в котором наблюдалось фазовое превращение, концы отрезков – температуры проведения Т-РФА).

сать, таким образом, как упорядоченный твердый раствор на основе α -CaNaPO₄ со сверхструктурой 2×3 , т.е. $a_A = 2a_\alpha$, $c_A = 3c_\alpha$.

Если рассматривать данную фазу как родственную нагельшмидтиту (тип $A_7(XO_4)_2(YO_4)_2$), имея в виду близкие значения отношений (Ca + M)/P, то максимальная степень упорядочения должна на-

Рис. 4. Сравнение рентгенограмм фаз α-CaNaPO₄ и А.

блюдаться для состава $Ca_5Na_2(PO_4)_4$, кристаллохимическая формула которого с учетом глазеритного мотива разбиения структуры на катионные { } и катион-анионные [] колонки может выглядеть как { Ca_4 }[$CaNa_2\square(PO_4)_4$]. Сверхструктура может быть связана как с упорядочением вакансий (сверхструктура вдоль оси *a*), так и с упорядочением кальция и натрия в катион-анионной колонке (сверхструктура вдоль оси *c*). Общую формулу твердого раствора A на основе нагельшмидтита можно записать, таким образом, как { Ca_4 }[$Ca_{1+x/2}Na_{2-x}\square_{1+x/2}(PO_4)_4$].

Использование смешанных фосфатов кальция и щелочных металлов для получения резорбируемой биокерамики предполагает поиск составов, закалка которых от высоких температур позволяет сохранять наибольшее количество высокотемпературных полиморфных модификаций, в частности фаз со структурой α-ренанита или упорядоченных твердых растворов на его основе. Для определения оптимальных составов с максимальным содержанием высокотемпературных фаз был проведен эксперимент по быстрому охлаждению (скорость охлаждения ~50 град/мин) керамических образцов двойных фосфатов кальция и натрия разного состава (x = 0-1) и определению массовых соотношений в полученных керамиках. В области "средних" составов x = 0.3 - 0.8 (рис. 5) в результате быстрого охлаждения от температур выше инвариантного равновесия β-ТКФ – фаза А –

Рис. 5. Содержание фаз α-ренанита (точки), упорядоченной твердого раствора на основе α-ренанита (диагональные линии), β-ренанита (вертикальные линии), β-ТКФ (горизонтальные линии) в керамике при закалке с 1200°С.

 α -CaNaPO₄ удается получить значительные количества фазы на основе высокотемпературного α -CaNaPO₄ (упорядоченного или неупорядоченного, в зависимости от состава); наилучшие в этом смысле составы лежат в области x = 0.6-0.8.

Полиморфизм СаКРО₄

Для определения структурного типа высокотемпературной фазы α -CaKPO₄ был проведен эксперимент аналогичный с CaNaPO₄, с использованием Al₂O₃ в качестве внутреннего стандарта. Полученная в результате рентгенограмма (рис. 6) для α -CaKPO₄ полностью повторяет рентгенограмму для α -CaNaPO₄, только со смещением всей дифракционной картины в сторону меньших углов, т.е. с увеличением параметров элементарной ячейки (табл. 2).

На рентгенограмме β -СаКРО₄ (рис. 7) имеется большее по сравнению с β -СаNаPO₄ количество рефлексов, которые связаны, по-видимому, с моноклинным искажением гексагональной структуры высокотемпературной фазы α -СаКРО₄. Этот факт можно сопоставить с превращением α -ТКФ $\leftrightarrow \alpha'$ -ТКФ ($P_{1/a} \leftrightarrow P\overline{3}m$) [16] и убедиться в структурном сходстве пар α -ТКФ, β -СаКРО₄ и α' -ТКФ, α -СаКРО₄. Однако по сравнению с быстрым деформационным переходом 1-го рода α -ТКФ $\leftrightarrow \alpha'$ -ТКФ [11], переход $\beta \rightarrow \alpha$ -СаКРО₄ явно заторможен. По данным ДТА, переход $\beta \rightarrow$ $\rightarrow \alpha$ -СаКРО₄ происходит в диапазоне 660–860°С

Рис. 6. Сравнение рентгенограмм фаз α -CaNaPO₄ и α -CaKPO₄.

Рис. 7. Сравнение рентгенограмм фаз β -CaKPO₄ и β -CaNaPO₄.

(по данным Т-РФА, ~675 ± 25°С), причем переохлаждение может превышать 200°С. По данным дилатометрии, переход $\beta \rightarrow \alpha$ -КСаРО₄ сопровождается отрицательным объемным эффектом $\Delta V/V = -2\%$ (рис. 8).

Таблица 2. Сравнение параметров элементарной ячейки (*P*3*m*1) α-CaKPO₄ и α-CaNaPO₄ при 1200°C

Фаза	<i>a</i> , Å	c, Å	<i>V</i> , Å ³
α-CaKPO ₄	5.615(1)	7.725(2)	210.96(6)
α-CaNaPO ₄	5.440(5)	7.536(6)	193.16(2)

Рис. 8. Данные дилатометрии для компактного образца чистой фазы СаКРО4.

Рис. 9. Данные ДТА для определения фазовых превращений, на примере $Ca_{3-x}K_{2x}(PO_4)_2$ (x = 0.3) (сегменты нагревания и охлаждения).

Таким образом, по сравнению с превращением $\alpha \rightarrow \beta$ -CaNaPO₄ переход 1-го рода $\alpha \rightarrow \beta$ -KCaPO₄ кинетически заторможен, что, по-видимому, связано с бо́льшим ионным радиусом К по сравнению с Na, приводящим к более медленному смещению катионов в колонках и затруднению вращения фосфатных тетраэдров. Это позволяет получать

Таблица 3. Сравнение параметров элементарной ячейки фазы В при 1250°С с параметрами высокотемпературной фазы α-CaKPO₄

$\operatorname{Ca}_{3-x} K_{2x}(\operatorname{PO}_4)_2$	a, Å	c, Å	V, Å ³
$x = 0.3; t = 1250^{\circ} \text{C}$	10.868(5)	22.94(1)	2709.52(1)
$x = 0.4; t = 1250^{\circ}$ C	5.615(1)	7.725(2)	243.55(1)

однофазный продукт, содержащий исключительно высокотемпературную фазу α-CaKPO₄ путем быстрого охлаждения и в то же время создает трудности при получении чистой фазы низкотемпературной модификации CaKPO₄.

Фазовая диаграмма системы Са₃(PO₄)₂-СаКРО₄

Данных по системе Ca₃(PO₄)₂-CaKPO₄ в литературе не было найдено, приведенные ниже результаты – первая попытка построения диаграммы рассматриваемой системы.

Температуры эндотермических эффектов, которые были получены по данным ДТА (рис. 9), были нанесены на диаграмму $Ca_3(PO_4)_2$ —CaKPO₄ в зависимости от состава (рис. 10). Для изучения фазовых полей данной фазовой диаграммы было проведено несколько Т-РФА для смесей $(1 - x)Ca_3(PO_4)_2 + xCaKPO_4 с составами x = 0.15, 0.2, 0.3, 0.33, 0.4, 0.5, 0.6, 0.7, 0.8 и 1.0.$

На фазовой диаграмме явно прослеживаются три изотермы: при $t = 664 \pm 5$, 1130 ± 5 и $1233 \pm 5^{\circ}$ С. Исходя из зафиксированных методом ДТА фазовых превращений, мы предположили два варианта интерпретации данной диаграммы. Один из них основывается на возможном существовании фазы типа А, наблюдаемой в системе Са₃(PO₄)₂–CaNaPO₄. Второй предполагает, что в данной системе эта фаза не существует, и при $t > 1130 \pm 5^{\circ}$ С в равновесии находятся фазы α -Ca₃(PO₄)₂ и α -CaKPO₄. Детальный Т-РФА при x = 0.3 и 0.4 склонил наш выбор в пользу первого варианта, однако выявил и отличия от диаграммы системы Ca₃(PO₄)₂–CaNaPO₄:

 состав промежуточной фазы и ее строение отличаются от фазы А. Мы обозначили ее как фазу Х;

2) при температуре >1233°С фаза X превращается в фазу В (рис. 11). Сравнение параметров элементарных ячеек В и α-СаКРО₄ (табл. 3) показывает, что фаза В является К-аналогом фазы А (упорядоченный твердый раствор со сверхструк-

Рис. 10. Фазовая диаграмма системы Ca₃(PO₄)₂-CaKPO₄ с нанесенными данными ДТА (кружки) и T-PФА (отрезки, обозначающие температурный диапазон, в котором наблюдалось фазовое превращение, концы отрезков – температуры проведения T-PФА).

турой 2 × 3) в системе $Ca_3(PO_4)_2$ — $CaNaPO_4$ и ее формулу можно записать, исходя из структуры нагельшмидтита, как { Ca_4 }[$Ca_{1+x/2}K_{2-x}\square_{1+x/2}(PO_4)_4$].

Определение оптимальных составов для керамических образцов (максимальное содержание высокотемпературных фаз) было проведено по аналогии с экспериментом для системы $Ca_3(PO_4)_2$. В области x = 0.4-0.8 удается получить наибольшее содержание высокотемпературной фазы в керамических образцах.

Фаза Х

Весь класс апатитов в большинстве случаев может быть описан двумя основными обобщенными формулами: $M_{10}(XO_4)_6Y_2$, $M_{10}(XO_4)_6(\Box)_2$ (M: Ca²⁺, Sr²⁺, Pb²⁺..., XO_4^{2-} : PO₄³⁻, VO₄³⁻, AsO₄³⁻..., Y: F⁻, OH⁻, Cl⁻ и \Box – вакантное место аниона Y).

Апатиты, идентифицированные как $M_{10}(XO_4)_6\square_2$, стабильны только тогда, когда гексагональные каналы заняты катионами Tl⁺, Pb²⁺, Bi³⁺, которые несут неподеленные электронные пары *ns*², располагающиеся в пустом канале [17]. Возможность существования Ca₈K₂(PO₄)₆ \square_2 была предсказана ранее [6], однако никаких достоверных экспериментальных данных о существовании данной фазы нами не было найдено. С помощью РФА был определен структурный тип фазы Х. Полученная рентгенограмма (рис. 12) полностью индицируется (табл. 4) в рамках пр. гр. $P6_3/m$; параметры элементарной ячейки a = 9.458(1), c = 7.033(5) Å. Полученные размеры и тип симметрии элементарной ячейки, а также запись формулы фазы $X - Ca_{6-y}K_xCa_{2+y}K_{2-y}(PO_4)_6\Box_2$ (состав $Ca_{3-x}K_{2x}(PO_4)_2$ с x = 0.33 приведен к цело-

Рис. 11. Сравнение рентгенограмм фаз α-СаКРО₄ и В.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 11 2014

Рис. 12. Рентгенограмма фазы Х при 1200°С.

численным индексам) позволяют предположить, что фаза X имеет сходную с апатитом структуру, в которой каналы, составленные катионами в позиции II (6*h*), являются пустыми. По данным ИК-спектроскопии, никаких колебаний, характерных для ОН-группы (при ~630 и 3570 см⁻¹), не было обнаружено, что косвенно свидетельствует об отсутствии молекул воды и,

Таблица 4. Рентгенометрические данные для $Ca_8K_2(PO_4)\square_2$ при комнатной температуре (предполагаемая пр. гр. $P6_3/m$)

<i>d</i> , Å	<i>I</i> , %	hkl
8.285	39	100
4.761	14	110
4.119	16	200
3.947	13	111
3.538	49	002
3.249	10	102
3.110	35	210
2.848	100	211
2.832	78	112
2.742	92	300
2.677	8	202
2.552	5	301
2.330	1	212
2.280	23	310

следовательно, о незаполненном канале в структуре апатита. Возможность существования подобной высокотемпературной фазы (ниже $1130 \pm 5^{\circ}$ C она претерпевает эвтектоидный распад на β-TKФ и α -CaKPO₄) мы связываем как с энтропийным фактором стабилизации за счет распределения катионов между позициями типа I и II, так и с уменьшением электростатического отталкивания катионов, образующих канал, за счет снижения среднего заряда в позициях 6*h* при замене Ca²⁺ на K⁺.

Отсутствие фазы Х в натриевой системе заставляет предположить, что соотношение ионных радиусов щелочного и щелочноземельного катионов влияет на распределение катионов по позициям структуры апатита и тем самым на устойчивость фазы с незаполненными гексагональными каналами. Нами были предприняты попытки получить подобные фазы $A_8B_2(PO_4)_{62}$, комбинируя различные по размерам щелочные и щелочноземельные катионы: $A = Ca^{2+}$, Ba^{2+} ; $B = K^+$, Cs⁺. Однако синтез в интервале температур 1000-1300°С не привел к искомым результатам. Подобный экспериментальный факт не отрицает важности соотношений размеров катионов, а скорее подчеркивает необходимость поиска области стабильности фаз $A_8 B_2 (PO_4)_{62}$ в более широком диапазоне температур.

Таким образом, фазовые соотношения в квазибинарных разрезах $Ca_3(PO_4)_2$ — $CaMPO_4$ (M = Na, K) характеризуются высокотемпературным изоморфизмом глазеритоподобных фаз α' - $Ca_3(PO_4)_2$ и α -CaMPO₄. В области составов, близких к чистым компонентам, понижение температуры приводит к относительно быстрым фазовым превращениям 1-го рода деформационного характера. В области средних составов понижение температуры сопровождается катионным упорядочением высокотемпературного твердого раствора на основе α -MCaPO₄ с образованием индивидуальных фаз.

Основные отличия системы $Ca_3(PO_4)_2$ -CaKPO₄ от $Ca_3(PO_4)_2$ -CaNaPO₄ заключаются:

a) в смещении нонвариантных равновесий в область более высоких температур;

б) в замедлении фазовых превращений вследствие меньшей диффузионной подвижности К, приводящему, в частности, к появлению полиморфизма у промежуточной фазы упорядоченного твердого раствора на основе α-CaKPO₄; низкотемпературная модификация состава Ca₈K₂(PO₄)₆ имеет структуру апатита с незаполненными гексагональными каналами;

в) в отличной от натриевого аналога структуре низкотемпературной β -CaKPO₄, вследствие чего превращение $\alpha \rightarrow \beta$ сопровождается увеличением мольного объема.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 11 2014

Результаты исследования диаграммы Са₃(PO₄)₂—СаКРО₄ и структур составляющих ее фаз получены в рамках выполнения проекта РНФ № 14-19-00752. Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета им. М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kanazawa T*. Inorganic Phosphate Materials. Oxford: Elsevier Science Ltd, 1989. 306 p.
- 2. Ando J. // Bull. Chem. Soc. Jpn. 1958. V. 31. № 2. P. 201.
- 3. *Ando J., Matsuno S.* // Bull. Chem. Soc. Jpn. 1968. V. 41. № 2. P. 342.
- 4. *Znamierowska T.* // Pol. J. Chem. 1981. V. 55. № 4. P. 747.
- 5. *Berak J., Znamierowska T.* // Rocz. Chem. 1972. V. 46. № 11. P. 1921.
- 6. Bredig M.A. // J. Phys. Chem. 1942. V. 46. P. 747.

- 7. Chung F.H. // J. Appl. Cryst. 1974. V. 7. P. 526.
- 8. Ozawa T. // Bull. Chem. Soc. Jpn. 1965. V. 38. P. 1881.
- 9. Flynn J.H., Wall L.A. // Polym. Lett. 1966. V. 4. P. 323.
- 10. *Vyazovkin S.* // J. Therm. Anal. Cal. 2006. V. 83. № 1. P. 45.
- 11. *Евдокимов П.В., Путляев В.И., Мерзлов Д.А. и др. //* Наносист. физ. хим. мат. 2013. Т. 4. № 1. С. 48.
- 12. Putlayev V.I., Evdokimov P.V., Garshev A.V. et al. // Rus. Phys. J. 2014. V. 56. № 10. P. 1183.
- 13. Morozov V.A., Belik A.A., Kotov R.N. et al. // Cryst. Rep. 2000. V. 45. № 1. P. 13.
- Millet J.M., Sebaoun A., Thomas G. // J. Therm. Anal. 1984. V. 29. P. 445.
- Celotti G., Land E. // J. Europ. Ceram. Soc. 2003. V. 23. P. 851.
- Yashima M., Sakai A. // Chem. Phys. Lett. 2003. V. 372. P. 779.
- 17. Azrour M., Azdouz M., Manoun B. et al. // J. Phys. Chem. Sol. 2011. V. 72. P. 1199.