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Advantages of polarization control in RABBITT1
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The reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) setup is
theoretically studied for various combinations of extreme ultraviolet and infrared (IR) field components po-
larization: “linear+linear,” “linear+circular” with crossed propagation directions, and “circular+circular” with
parallel propagation directions. We examine the general properties of photoelectron angular distributions and
their response to the variation of the IR pulse delay. Numerical simulations are performed for the neon valence
shell ionization into the structureless continuum using two approaches: time-dependent perturbation theory and
the solution of amplitude rate equations. To distinguish between “geometrical” governed by fields polarization
and spectroscopic features, we provide an additional analysis for the case of s-shell ionization.
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I. INTRODUCTION18

Since the very beginning of photoionization experiments,19

it has been well known that angle-resolved measurements20

provide more profound and detailed information about a pro-21

cess than measurements of angle-integrated probabilities [1].22

The application of a multicolor field significantly enhances23

experimental capabilities because the polarization and propa-24

gation directions of the field components can be modulated25

separately [2]. This has paved the way for measurements26

of different types of dichroism, primarily linear and circular27

magnetic dichroism. The first attempts to access dynamical28

peculiarities of multiphoton ionization were based on varia-29

tion of the time offset (lag) between pump and probe fields30

[3,4]. The development of highly coherent sources of extreme31

ultraviolet (XUV) and x-ray radiation, such as high-order har-32

monic generation (HHG) setups [5–7] or x-ray free-electron33

lasers (XFELs) [8,9], opens a fruitful perspective for vector34

correlation control in attosecond metrology. That has made35

possible experimental studying of the dynamics of small36

quantum systems on attosecond timescales [10–13].37

Attosecond metrology based on the RABBITT (recon-38

struction of attosecond beating by interference of two-photon39

transitions) scheme [14], where an electron is promoted to40

the continuum by an XUV harmonic and then additionally41

absorbs or emits an optical [infrared (IR)] photon, started with42

angle-integrated experiments [15–18] and corresponding the-43

oretical considerations [19–21]. Meanwhile, the interference44

of pathways underlying the scheme manifests differently in45

different waves (s, p, d ,...) at different photoemission angles46

[22]. RABBITT experiments have advanced to the angle-47

resolved case [23–27], and various theoretical approaches48

have been employed [28]. Angle-resolved measurements pro-49

vide more detailed information and allow for the separation50

different pathways [22,29–34]. Moreover, considering that the51

energy dependency of vector correlations differs from that of 52

angle-integrated one [35] and may be narrower and shifted, 53

the investigation may be useful for resolving overlapping res- 54

onances or in case where the XUV spectrum is very broad, 55

causing single- and two-photon signals to overlap in energy. A 56

separate branch of investigations is devoted to further tuning 57

of the RABBITT technique in solids [36–38], where, in addi- 58

tion, a position of a target itself relative to the polarization of 59

the electromagnetic field should be carefully considered. 60

The ability to perform angle-resolved measurements is a 61

milestone for schemes with a mixture of waves with differ- 62

ent parities in a sideband: (a) XUV harmonics differ by 3ω 63

[39–41], (b) a bichromatic combination ω and 2ω is applied 64

[24], and (c) significant quadrupole effects are expected. 65

Despite the significant progress made in the field, very 66

few studies involving different harmonics’ polarizations (or 67

their directions) are reported [28,30,42,43]. Given the essen- 68

tial progress in the generation of circularly and elliptically 69

polarized harmonics [44–47], there is a need for a systematic 70

investigation of polarization effects in the RABBITT setup. 71

Special attention in such an investigation must be paid to 72

angle-resolved observables. It is important to emphasize that 73

for some combinations polarizations and propagation direc- 74

tions of the components, RABBITT oscillations may appear 75

only in angle-resolved parameters, even in a conventional 76

scheme with XUV components that differ by 2ω. 77

Unless otherwise specified, the atomic system of units is 78

used. 79

II. THEORETICAL BASEMENT FOR THE 80

RABBIT DESCRIPTION 81

In this paper we extend the approaches based on solving 82

an analog of rate equations for the amplitudes and time- 83

dependent perturbation theory applied earlier for linearly 84
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TABLE I. The polarization coefficients cλ [see Eq. (1)] in the
cyclic basis {−, 0, +} for different geometries and the list of allowed
channels. The index (u) marks the channels proceeding with absorp-
tion of the IR photon, (d ) with emission.

Geometry ↑→ ↑� �↑ ��
system z||EXUV z||EXUV z||kXUV z||kXUV

cXUV {0, 1, 0} {0, 1, 0} {0, 0, 1} {0, 0, 1}
cIR

{
eiγ√

2
, 0, − e−iγ√

2

} {0, 0, 1} {0, 1, 0} {0, 0, 1}
He-like εdu,d εdu,d εdu,d εdu,d , εsd

εp1Su

Noble εp1Pu,d εp1Pu,d εp1Pu,d εp1Pu

gases εp1Du,d εp1Du,d εp1Du,d εp1Du,d

ε f 1Du,d ε f 1Du,d ε f 1Du,d ε f 1Du,d

polarized fields [48,49] to systems with more complex ge-85

ometries (polarization and propagation direction of the field86

component). Thus, here we briefly describe the methods87

clearly highlighting the polarization aspects.88

The electromagnetic field is presented as a sum of XUV89

harmonics of an order N generated on a seed IR pulse:90

E(t ) = Re

[ ∑
N�λ

EXUVc�ε�e−i(Nωt+φN ) + Eircλελe−i(ωt+φ)

]
,

(1)

where EXUV = E0
XUV cos2( t

τ
) and EIR = E0

IR cos2( 2t
τ

) are91

slowly varying envelopes with E0
IR and E0

XUV being strengths92

of the IR and XUV components, respectively, and τ deter-93

mines the pulse duration; φN is N th XUV components’ phase,94

and φ is the varying phase shift of the IR pulse connected with95

the IR pulse delay τdel as φ = 2ωτdel. We use a cosine enve-96

lope instead of a Gaussian one because it provides smoothness97

at the (finite) edges of the pulse. The field polarization is98

determined by a decomposition over cyclic coordinate vec-99

tors ελ/�=1 = −(εx − iεy)/
√

2, ελ/�=−1 = −(εx + iεy)/
√

2,100

and ελ/�=0 = εz with coefficients cλ/�.101

If a quantization axis is aligned with the field propagation102

direction, then the field of arbitrary polarization can be rep-103

resented as a combination of two waves with right (ε+1) and104

left (ε−1) circular polarization. Since the propagation direc-105

tion may not coincide with the quantization axis z, nonzero106

contribution of ελ/�=0 appears (see Table I and Fig. 1).107

The cyclic basis is convenient because of its direct connec-108

tion with selection rules for the magnetic quantum number109

M in systems with spherical symmetry. For example, the110

absorption of a photon with helicity λ = +1 transfers a state111

with magnetic quantum number M into one with M + 1 (see112

Fig. 2).113

The atomic Hamiltonian is presented in the form114

i
∂

∂t

(r, t ) = (Ĥat + Ĥint (t ))
(r, t ), (2)

where Ĥat is unperturbed Hamiltonian and Ĥint (t ) describes115

the interaction with electromagnetic field in the dipole ap-116

proximation and velocity gauge with electric field potential117

A(t ) = −c
∫

E(t )dt .118

FIG. 1. An example of decomposition of an electric field with
ellipticity equal to 0.4 and an angle between major ellipse axis and its
projection to xy plane equal to −π/6 over cyclic coordinate vectors
in a chosen coordinate system.

We adopt the LS-coupling scheme, which is good for de- 119

scribing the ionization of noble gases up to Kr in featureless 120

continuum, as relativistic effects do not play a major role. In 121

the LS-coupling scheme within the frozen core approxima- 122

tion, eigenfunctions of the system ψαn (εn, r) depend on the 123

following quantum numbers: energy εn (ε without an index 124

if a state belongs to a continuum spectrum), core (ion) or- 125

bital momentum, and spin Lc and Sc, active electron angular 126

momentum l and spin s = 1
2 , total angular momentum L and 127

spin S, and their projections ML = M and MS . Accounting 128

that the electric dipole operator does not change spin �S = 0 129

and an atom is initially in a state with a definite spin, we can 130

rule out the spin quantum numbers for brevity: ψαn (εn, r) ≡ 131

ψ(Lcl )L(Sc
1
2 )SMLMS

(εn, r) ≡ ψ(Lcl )LM (εn, r). A wave function of 132

the system 
(r, t ) is expanded in the basis of eigenfunctions 133

of the unperturbed Hamiltonian: 134

Ĥatψαn (εn, r) = εnψαn (εn, r), (3)


(r, t ) =
∑

LclLM

(∑
n

U(Lcl )LM (εn, t )ψαn (εn, r)e−iεnt

+
∫

dε U(Lcl )LM (ε, t )ψαε
(ε, r)e−iεt

)
, (4)

where αε means a set of quantum numbers of a state with an 135

electron in continuum. 136

Then the system of differential equations for expansion 137

coefficients 138

dU(Lcl )LM (εn′ , t )

dt
= −i

∫∑
n

ei(εn′ −εn )t
〈
ψα′

n

∣∣Ĥint (t )
∣∣ψαn

〉
×U(Lcl )LM (εn, t ) (5)

is solved numerically in the amplitude coefficient equa- 139

tions (ACE) method [50]. To describe the continuum states 140

in (5), the continuum discretization was applied, i.e., integra- 141

tion was replaced by summation with uniform energy step 142

dε. Thereby, |U(Lcl )LM (εε, t )|2 is the probability of finding 143

an electron within a neighborhood dε of the energy ε at 144

time t . 145
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FIG. 2. The scheme of RABBITT for different geometries: (a) the XUV comb and IR field are linearly polarized in the orthogonal
directions; (b) linearly polarized XUV comb and circularly polarized IR; (c) circularly polarized XUV comb and linearly polarized IR field;
(d) both XUV comb and IR field are circularly polarized.

The vector potential can be further decomposed into146

AXUV(t ) that describes the XUV comb and Au
IR(t ) and Ad

IR(t )147

that describe the IR and behave as e−i(ωt+φ) and ei(ωt+φ),148

respectively. The component Au
IR(t ) is associated with the ab-149

sorption of an IR photon (photoelectron goes “up” in energy),150

and Ad
IR(t ) with the emission (photoelectron goes “down” in151

energy).152

Within the framework of perturbation theory (PT), the153

coefficients U(Lcl )LM (εn, t ) in Eq. (5) are, in turn, expanded154

into a series.155

Henceforth, we specify a target as a shell of an unpolarized156

atom with an initial orbital angular momentum L = 0.157

The first-order coefficients describe direct ionization to the158

main photolines (ML) by XUV components of the electric159

field:160

U (1)
(Lcl )LM (ε f , t ) = c�

1√
3

(00, 1� | 1M )D(1)
(Lcl )1, (6)

D(1)
(Lcl )1 = −i〈ε f ; (Lcl )1 || D̂ || ε0,0〉

∫ τ/2

−τ/2
Axuv(t )ei(ε f −ε0 )t dt,

(7)

where (00, 1� | 1M ) is equal to 1 for each � and it determines161

a specific M. We suppose the component to be either circularly162

or linearly polarized that means that with appropriate choice163

of a coordinate system only one c� 	= 0.164

The second-order amplitudes describe absorption (“u”)165

or emission (“d”) of an IR photon leading to ap-166

pearance of sidebands (SB) by up- and down-energy167

transitions:168

U (2),u/d
(Lcl )LM (ε f , t ) = (±1)λ√

3L̂

∑
λ

cλ(1�, 1 ± λ | LM )D(2),u/d
(Lcl )L ,

(8)

D(2),u/d
(Lcl )L =

∫
n

∑
〈ε f ,(Lcl )L || D || εn,1〉〈εn,1 || D || ε0,0〉

×
∫ τ

−τ

Au/d
IR (t )ei(ε f −εn )t

∫ t

−τ/2
Axuv(t ′)ei(εn−ε0 )t ′

dt ′dt,

(9)

where the plus (+) sign is for absorption amplitude, and the169

minus (−) sign is for emission. Factor (±1)λ comes from tak-170

ing complex conjugation in cyclic basis: ε∗
+1 = −ε−1 and vice 171

versa. In Eq. (8), conventional notation for Clebsch-Gordan 172

coefficients is used and â = √
2a + 1. 173

The photoelectron angular distribution (PAD) in PT and 174

ACE is described as 175

W (ε f , t ; ϑ, ϕ)

= 1

4π

∑
kqll′LL′
nn′νν′

(−1)Lc+L+L′+k−M ′
l̂ l̂ ′L̂L̂′

× (l0, l ′0 | k0)(LM, L′ − M ′ | kq)

{
l L Lc

L′ l ′ k

}

× U (n),ν
(Lcl )LM (ε f , t )U (n′ ),ν ′∗

(Lcl ′ )L′M ′ (ε f , t )

√
4π

k̂
Ykq(θ, ϕ), (10)

where ν is an order of amplitude in PT (in ACE the result- 176

ing amplitude U(Lcl )LM (ε f , t ) is an “infinite sum” over ν). In 177

Eq. (10), conventional notations for the Wigner 6 j symbol and 178

spherical harmonics are used. 179

In Eq. (10), the terms corresponding to the absorption 180

(U (2),uU (2),u∗) and emission (U (2),dU (2),d∗) of an IR photon 181

do not depend on the IR time delay; the interference term 182

between absorption and emission amplitudes (U (2),uU (2),d∗) 183

depends on the IR delay and oscillates at the double IR fre- 184

quency 2ω. 185

III. THE PAD FOR DIFFERENT GEOMETRIES 186

In Fig. 2, there are schemes of RABBITT spectroscopy for 187

the systems under consideration: 188

(a) The XUV comb and IR field are linearly polarized in 189

the orthogonal directions (quantization axis is along the XUV 190

component polarization z ‖ EXUV), further referred as ↑→. 191

(b) Linearly polarized XUV comb and circularly polarized 192

IR field (quantization axis is along the XUV component po- 193

larization z ‖ EXUV and EXUV ‖ kIR), further referred as ↑�. 194

(c) Circularly polarized XUV comb and linearly polarized 195

IR field (quantization axis is along the IR component polar- 196

ization z ‖ EIR and EIR ‖ kXUV), further referred as �↑. 197
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(d) Both the XUV comb and IR field are circularly polar-198

ized (quantization axis is along the field propagation direction199

z ‖ kIR ‖ kXUV), further referred as ��.200

These geometries were chosen for possessing the electric201

field of the highest symmetry. The case of the linearly polar-202

ized in the same direction XUV and IR fields was studied by203

the same methods earlier in [49]. The quantum numbers in204

Fig. 2 are depicted for a system with initial orbital momentum205

L = 0 (a noble gas). Further, we apply the approach to valence206

shell ionization of neon and specify the general equations for207

the s-shell ionization (1s of He, 2s of Ne, 3s of Ar, etc).208

In Table I, channels allowed for the different geometries209

under consideration are presented. For the geometries ↑→,210

�↑, and ↑� final projection of magnetic quantum number211

M = 1, therefore, the terms are P (L = 1) and D (L = 2). For212

the heliumlike systems l = L, there is a single d-wave channel213

because the parity conservation rule prohibits emission of the214

p wave. The �� geometry is exceptional because the S (L =215

0) (for neon) and εs (for helium) channel is involved for216

down-energy (equal helicities of IR and XUV) or up-energy217

(opposite helicities) transitions.218

A. A shell of a noble gas 219

It is convenient to extract a fields’ polarization-independent 220

dynamical parameter B(νμ)
k [L, L′] from the general angular 221

distribution equation (10). For the sidebands in the second 222

order of PT it takes a form 223

B(μμ′ )
k [L, L′] = (−1)L f +L+L′

12π

∑
ll ′

l̂ l̂ ′(l0, l ′0 | k0)

×
{

L L′ k
l ′ l L f

}
D(2),μ

(Lcl )LD(2),μ′∗
(Lcl )L , (11)

where μ,μ′ = u, d , and the dynamical parameters obey per- 224

mutation equation B(μμ′ )
k [L, L′] = B(μ′μ)

k [L′, L]∗. In the case 225

of the ACE, the definition (11) is fair, except that instead of 226

the second-order term D(2),μ
(Lcl )L one must consider a complete 227

amplitude that possesses given quantum numbers. 228

With the help of Eq. (11) the angular distributions for 229

specific geometries can be written in an easier for an analysis 230

form as B(νμ)
k [L, L′]s do not depend on polarization and are 231

the same for every geometry: 232

W ↑→(θ, ϕ) =
∑
kLL′

(−1)L+L′+1

2

(
B(dd )

k [L, L′] + B(uu)
k [L, L′] + B(ud )

k [L, L′] + B(du)
k [L, L′]

)

×
(

(L1, L′ − 1 | k0)Pk (cos θ ) + (−1)L′
(L1, L′1 | k2)

√
4π

k̂
[ηYk2(θ, ϕ) + η∗Yk−2(θ, ϕ)]

)
(12)

= σ ↑→

4π

⎛
⎝1 +

∑
k=2,4

β
↑→
k Pk (cos θ ) + β

↑→
k2

√
4π

k̂
[ηYk2(θ, ϕ) + η∗Yk−2(θ, ϕ)]

⎞
⎠ ; (13)

W ↑�(θ, ϕ) =
∑
kLL′

(−1)L+L′+1

2
(L1, L′ − 1 | k0)

(
B(dd )

k [L, L′] + B(uu)
k [L, L′]

)
Pk (cos θ ) (14)

+ (L1, L′1 | k2)
(−1)L

2

√
4π

k̂

[
B(ud )

k [L, L′]Yk2(θ, ϕ) + B(du)
k [L′, L]Yk−2(θ, ϕ)

]

= σ ↑�

4π

(
1 +

∑
k=2.4

β
↑�
k Pk (cos θ ) +

√
4π

k̂
(β↑�

k2 Yk2(θ, ϕ) + β
↑�∗
k2 Yk−2(θ, ϕ))

)
; (15)

W �↑(θ, ϕ) =
∑
kLL′

(L1, L′ − 1 | k0)
−1

2

(
B(dd )

k [L, L′] + B(uu)
k [L, L′] + B(ud )

k [L, L′] + B(du)
k [L′, L]

)
Pk (cos θ ) (16)

= σ�↑

4π

⎛
⎝1 +

∑
k=2,4

β
�↑
k Pk (cos θ )

⎞
⎠; (17)

W ��(θ, ϕ) =
∑
kLL′

[
(L0, L′0 | k0)(11, 1 − 1 | L0)(11, 1 − 1 | L′0)B(dd )

k [L, L′] + (22, 2 − 2 | k0)B(uu)
k [2, 2]

]
Pk (cos θ )

− (22, L′0 | k2)(11, 1 − 1 | L′0)

√
4π

k̂

[
B(ud )

k [2, L′]Yk2(θ, ϕ) + B(du)
k [L′, 2]Yk−2(θ, ϕ)

]
(18)

= σ��

4π

(
1 +

∑
k=2.4

β��
k Pk (cos θ ) +

√
4π

k̂
[β��

k2 Yk2(θ, ϕ) + β��∗
k2 Yk−2(θ, ϕ)]

)
. (19)
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FIG. 3. The sample of PAD for the case of heliumlike system and
different geometries.

The parameter η = − exp[−2iγ ]/2 is defined by the angle γ233

of IR polarization vector with respect to the x axis in the xy234

plane. Equations (13), (15), (17), and (19) themselves are the235

definition of the integral photoemission probabilities (a proba-236

bility of photoelectron emission per atom during a pulse, later237

referred as “electron spectrum”) σ ...’s (k = 0) and angular238

anisotropy parameters β...
kq’s that allow us to characterize the239

shape of angular distributions by a few numbers since they are240

factors in front of the corresponding Legendre polynomials241

or spherical harmonics (see Fig. 4). The parameters β22(42)242

are defined to be in consistency with conventional parameters243

β2(4) [
√

4π

k̂
Yk0(θ, ϕ) is a Legendre polynomial Pk (cos θ )].244

The following general conclusions can be drawn about the245

properties of the angle-integrated probabilities and PADs:246

(1) For the ↑→ and �↑ geometries, the IR phase φ affects247

both the overall probability for an electron to be emitted at248

a given energy [σ = σ (φ)] and the angular anisotropy pa-249

rameters [β = β(φ)]; all of the angular anisotropy parameters250

are real; PAD inherits the symmetries of the resulting field:251

for the case ↑→, there are three orthogonal symmetry planes252

[see Fig. 3(a)] and for the case �↑, there is axial symmetry253

with respect to the IR polarization vector accompanied with254

orthogonal symmetry plane [see Fig. 3(c)].255

(2) For the ↑� and �� geometries, the phase-averaged256

part of Eqs. (14) and (18) which contains Bdd and Buu is axi-257

ally symmetrical, while the interference term contains Bud and258

Bdu that depend on azimuth angle ϕ; as a result, a complete259

PAD possesses the only one symmetry plane orthogonal to the260

IR propagation direction. Neither angle-averaged spectrum261

nor the PAD changes with variation of the IR phase φ except262

for the rotation of the last around z axis: Eqs. (15) and (19)263

incorporating β22,42 depend on IR phase as exp[±2i(φ − ϕ)].264

The angular anisotropy parameters β2(4),2 caused by interfer-265

ence are complex.266

(3) The circular magnetic dichroism can be observed only267

for the �� geometry.268

(4) The angular anisotropy parameters being a ratio of269

harmonic functions of φ are periodical but not harmonic func-270

tions of IR phase φ.271

B. Heliumlike system 272

In this paragraph we consider additional features which 273

arise when the ionized shell is an s shell, so-called heliumlike 274

system. In this case, the number of allowed ionization chan- 275

nels reduces significantly and they are characterized only by 276

photoelectron angular momentum l . For ↑→, ↑�, and �↑ 277

geometries, there is only one allowed channel: ionization to 278

d wave, for �� geometry, there are two channels: d and s 279

waves (see Table I). Equation (10) for the sidebands turns into 280

an extremely simple form 281

W ↑→(θ, ϕ) = 1

8π

(∣∣Du
εd

∣∣2 + ∣∣Dd
εd

∣∣2 + Du
εd Dd∗

εd + Dd
εd Du∗

εd

)
× sin2 θ cos2 θ cos2(ϕ − φ − γ ), (20)

W ↑�(θ, ϕ) = 1

16π

(∣∣Du
εd

∣∣2 + ∣∣Dd
εd

∣∣2 + e2iϕDu
εd Dd∗

εd

+ e−2iϕDd
εd Du∗

εd

)
cos2 θ sin2 θ, (21)

W �↑(θ, ϕ) = 1

16π

(∣∣Du
εd

∣∣2 + ∣∣Dd
εd

∣∣2 + Du
εd Dd∗

εd + Dd
εd Du∗

εd

)
× cos2 θ sin2 θ , (22)

W ��(θ, ϕ) = 1

12π

∑
kll ′

(l0, l ′0 | k0)2(11, 1 − 1 | l0)

× (11, 1 − 1 | l ′0)Dd
εlD

d∗
εl ′ Pk (cos θ )

+ 1

32π
|Du

εd |2 sin4 θ − 1

12π

∑
kl ′

(20, l ′0 | k0)

× (22, l ′0 | k2)(11, 1 − 1 | l ′0)

√
4π

k̂

× [
Du

εd Dd∗
εl ′Yk2(θ, ϕ) + Dd∗

εd Dd
εl ′Yk−2(θ, ϕ)

]
.

(23)

Here Du/d
εl ≡ D(2),u/d

(0l )l . In Fig. 3, the general pattern of PAD for 282

heliumlike system is presented. For the ↑→ and �↑ geome- 283

tries they are unconditional, for ↑� plotted under assumption 284

that Du
εd = Dd

εd . 285

In the case of heliumlike system one may conclude the 286

following: 287

(1) For the ↑→ and �↑ geometries, only d wave left, 288

and absorption and emission amplitudes come into the equa- 289

tions equally. The PADs turn into completely geometrical 290

form with β
↑→,�↑
2 = 5

7 , β
↑→,�↑
4 = − 12

7 , β
↑→
22 = −5

√
6/7, 291

and β
↑→
42 = −6

√
10/7. 292

(2) For the ↑� geometry, d-wave absorption (u) and emis- 293

sion (d) amplitudes contribute to PAD differently, and the 294

PAD is partly geometrical: β
↑�
2 = 5

7 , β
↑�
4 = − 12

7 : 295

β
↑�
22 = 5

√
6Du

εd Dd∗
εd

7
(∣∣Du

εd

∣∣2 + ∣∣Dd
εd

∣∣2) , β
↑�
42 = 6

√
10Du

εd Dd∗
εd

7
(∣∣Du

εd

∣∣2 + ∣∣Dd
εd

∣∣2) .

(3) For ↑→–�↑ geometries, the maximal probability of 296

electron emission is observed at the polar angle θ = π/4. 297

(4) For �↑ and �� geometries, the PADs possess the 298

same symmetries as in the general case. For ↑→ and ↑� 299

geometries, two additional symmetry planes arise: for ↑→ 300
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FIG. 4. Electron spectra σ (in atomic units) and angular anisotropy parameters βkq as defined in Eqs. (12)–(18). Colors indicate a specific
parameter (see the legends), and line type: IR phase and a model (solid lines are for PT and φ = 0, stars are for ACE and φ = 0; dashed
lines and circles are for PT and ACE for φ = π/4, respectively; dotted lines and crosses are for PT and ACE for φ = π/2). Parameters of the
electric field (1) are ω = 1.55 eV with its 17th, 19th, and 21nd harmonics; E 0

XUV = 10−4 a.u., E 0
IR = 2.5 × 10−3 a.u., and τ = 10 fs.

they are defined by the geometry and make angle ±π/4 with301

polarization vectors of IR and XUV comb; for ↑� they are302

defined by phase between up and down pathways and make303

an angle with x axis equal to Arg[Du
εd Dd∗

εd ].304

(5) For the �� geometry, there is a difference between305

pathways with the absorption and emission of an IR photon.306

While the first one leads to d wave only, the second allows also307

s wave. Therefore, the absorption pathway contributes to the308

plane orthogonal to the fields’ propagation direction, and the309

emission pathway may contribute in the fields’ propagation310

direction.311

IV. NUMERICAL EXAMPLE AND DISCUSSION312

In this section, the results of calculations of photoioniza-313

tion probability and angular anisotropy parameters in the neon314

valance shell induced by a pulse composed of an IR field315

with ω = 1.55 eV and its 17th, 19th, and 21nd harmonics316

are presented. The electric field parameters were set to the317

values typical for RABBITT experiments: E0
XUV = 10−4 a.u.,318

E0
IR = 2.5 × 10−3 a.u., and τ = 10 fs. Note that according to 319

Eq. (1), the duration of XUV components is half that of the IR 320

component. 321

Reduced dipole matrix elements between the ground state 322

2s22p6 1S and continuum states 2s22p5εl 1L in Eq. (7) were 323

calculated in the MCHF package [51] with a nonorthogonal 324

2p orbital. For the ground state, the experimental ionization 325

energy was used. Reduced dipole matrix elements between 326

continuum states in Eq. (9) were calculated using a method 327

described in [52] involving angular momentum algebra [48] 328

to convert the radial integrals into the matrix elements in an 329

appropriate angular momentum coupling scheme. 330

For the ACE method, dε was chosen to be 2.5 × 10−3
331

a.u. within the energy range (0,÷0.625) a.u. The numerical 332

results are stable over a broad diapason of range and step 333

parameters for intensities typical for RABBITT experiments 334

(1011–1013 W/cm2). To achieve convergence in the angle- 335

differential parameters, the energy range must be at least one 336

IR photon energy beyond the one under consideration; the step 337

size must be sufficiently fine such that the sideband includes 338
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at least five data points: two spikes appear in the differen-339

tial parameters (see Fig. 4) near the sideband cross-section340

maxima, yielding unreliable values; these points converge as341

the step size reduces.342

In Fig. 4, dimensionless parameters βkq defined by343

Eqs. (12)–(19) calculated by both ACE and PT methods are344

plotted alongside the integrated spectrum. Here, all φN were345

set to zero. The central peak is a mainline caused by 19th346

harmonic absorbtion, two lower peaks on either side of ML19347

are the sidebands SB18 and SB20. For ↑→ and �↑ geome-348

tries, calculations at three IR component phases φ = 0, π/4,349

and π/2 of are presented. For ↑� and �� geometries, the350

presented parameters do not depend on IR phase. For the351

↑→ geometry at φ = 0 and the �↑ geometry at φ = π/2,352

the integrated probability in sidebands is negligible, therefore,353

dimensionless anisotropy parameters are become less reliable354

and are not presented. The agreement between the methods355

is generally good. Given that the ACE calculation is more356

rugged, it is shown selectively where it is relevant to the357

discussion, so as not to compromise overall readability.358

The angular anisotropy parameters vary smoothly across359

the peaks except the edges where photoemission probability360

drops down. As it is clear from Eqs. (15) and (19), β22(42)361

determine the PADs’ dependency on the azimuth angle ϕ,362

while β2(4) determine the axially symmetrical contribution. In363

all cases, the parameters β22 are considerably smaller than β2364

and comparable to β4 and β42. The small magnitude of these365

parameters is a result of interference between ionization to f366

and p waves.367

If only f wave is important due to a spectroscopic feature,368

for the geometries ↑→–‘�↑ the anisotropy parameters tend to369

β2 → 4
7 , β4 → − 4

7 , β22 → −2
√

6/7, and β42 → −√
10/7.370

As previously mentioned, in the ↑→ and �↑ geometries,371

both the spectrum and parameters βkq depend on the IR phase372

φ [see Figs. 4(a) and 4(c)]. For the ↑→ and �↑ geome-373

tries, the formal equations for the integrated spectrum and374

β4, expressed in terms of the dynamical parameters (11), are375

identical. Nevertheless, it is important to consider that the376

corresponding amplitudes depend on the IR phase, and the377

last, when written in the form of Eq. (1), has a different378

physical meaning for different geometries. The easiest way379

to illustrate is that φ = 0 means EXUV ‖ z and EIR ‖ x for380

↑→ geometry, while φ = 0 means EXUV ‖ x and EIR ‖ y381

for �↑ geometry. Therefore, the same values of observables382

are reached at different phases, for example, σ ↑→(π/2) =383

σ�↑(0). The difference in β2 originates from different signs384

before the interference terms Bνμ[1, 2] [see factor (−1)L+L′+1
385

in Eq. (12)]. If for some reason either L = 1 (P term) or386

L = 2 (D term) dominates, β2 in these geometries would also387

coincide.388

In Fig. 5, PADs for different geometries and IR phases389

are constructed with the data from Fig. 4 for the sideband390

SB20 at ≈9.5 eV. In the schemes ↑→ and ↑�, β2 is positive,391

therefore, the maximum photoelectron emission is observed392

along the quantization axis (θ = 0, π ) because the other β’s393

are much smaller. Earlier it was shown that β2 is also positive394

when both of the field components are linearly polarized in395

the same direction [25,49]. In the schemes �↑ and ��, β2 is396

negative, therefore, the maximum photoelectron emission is397

observed in the plane perpendicular to the quantization axis398

FIG. 5. PADs as defined in Eqs. (12)–(19) for the sideband SB20
at ≈9.5 eV for considered geometries normalized to σ = 1 for IR
field phase φ = 0, π/4, π/2.

(θ = π/2). The PADs keep their form for the phases corre- 399

sponding to substantial signals in the sidebands and diverge 400

for the phases corresponding to minor sidebands (φ = 0 for 401

↑→ and φ = π/2 for �↑ geometries): as β2 sharply changes, 402

the contributions from the term with Y4,22,42(θ, ϕ) become 403

more significant [see Figs. 5(a) and 5(c)]. For these phases, 404

the PADs resemble the ones for heliumlike case [Figs. 3(a) 405

and 3(c)]. In schemes ↑� and ��, as previously mentioned, 406

the PAD rotates around z axis, with the variation of the IR 407

component phase φ. For neon, the effect of rotation is more 408

prominent for the geometry �� [see Figs. 5(b) and 5(d)]. 409

A short comment should be given about circular dichroism 410

in the scheme ��. In this geometry, there is an essential 411

difference in the allowed channels for the case when IR and 412

XUV components have the same helicity compared to when 413

they have opposite helicity. In the first case, pathways with 414

IR absorption lead to L = 2 (εd for helium), while those 415

with emission lead to L = 0, 1, 2 [εs(εd ) for helium)]. In the 416

second case, the situation is opposite. One can easily cast the 417

equation for dichroism using (18) and (23). The interesting 418

feature is that contribution of fourth-rank terms is strictly 419

canceled in the dichroism for any target. 420

It could be important for experimenters because extrac- 421

tion of higher-rank anisotropy parameters are usually more 422

difficult than those of 2nd rank. Nevertheless, for the region 423

of smooth continuum, the difference in probabilities of up 424

and down channels is little, and dichroism is not significant. 425

One should look for a system with a sharp spectroscopic fea- 426

ture (autoionizing resonance) to observe the circular magnetic 427

dichroism in such a setup. 428

Until now, we assumed that the phases of all of the XUV 429

harmonics were zero, φN = 0. In order to investigate the role 430

of the XUV phases, we chose �↑ geometry and assigned 431

several different values to φ19 (see Fig. 6). One can see that 432
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FIG. 6. PT calculations for geometry �↑ for different phases of 19th harmonic: ω = 1.55 eV with its 17th, 19th, and 21nd harmonics;
E 0

XUV = 10−4 a.u., E 0
IR = 2.5 × 10−3 a.u., τ = 10 fs, φ19 = π/4 (a), π/2 (b), and π (c) [see Eq. (1)]. Solid lines are for φ = 0, dashed lines

for φ = π/4, and dotted lines for φ = π/2.

varying the phase of an XUV component leads to a redis-433

tribution of the photoemission signal, therefore, the same434

magnitudes are achieved at different IR phases. The range of435

variation for the anisotropy parameters remains unchanged.436

V. CONCLUSIONS437

In this paper, we investigated how the polarization and438

propagation direction of the field components affect the kine-439

matics of photoionization in the RABBITT scheme. We440

considered the following scenarios: (a) crossed linearly polar-441

ized IR and XUV harmonics; (b), (c) either the XUV comb or442

the IR field is linearly polarized and the remaining component443

is circularly polarized and propagating along the linear polar-444

ization vector; (d) both the IR and XUV fields are circularly445

polarized.446

Among the considered geometries, setup (c) with circularly447

polarized XUV harmonics and linearly polarized IR com-448

ponent possesses the highest symmetry, i.e., axial symmetry449

with respect to the linear polarization vector. This geometry,450

as well as setup with crossed linearly polarized components,451

allows for the observation of RABBITT oscillations in both452

angle-integrated and angle-resolved probabilities of the elec-453

tron emission.454

On the contrary, for a circularly polarized IR field and455

either linearly or circularly polarized XUV comb (b), (d), only456

one symmetry plane exists, and RABBITT oscillations are457

observed only in the angular distribution of photoemission.458

In these geometries, the variation of the IR phase manifests in459

a rotation of the PAD with respect to the axis oriented along460

the direction of the IR component propagation.461

To distinguish between the geometrical (inherited solely 462

from the polarization of the electromagnetic field) and spec- 463

troscopic (inherited from the properties of the target, and thus 464

dependent on photon energy) features, we considered neon 465

and heliumlike targets. In the first case, the observable values 466

are determined by the interplay between different ionization 467

channels. In the second case, i.e., ionization of a s shell, for 468

the systems (a) and (c) PAD does not depend on dynamic 469

parameters, such as photon energy or even specific atom, 470

and its form is determined only by polarization of the fields. 471

For heliumlike system in the (b) geometry, the PAD reduces 472

to partly geometrical with the incoherent part that does not 473

depend on dynamical parameters, while the interference does 474

depend. 475

For the circularly polarized XUV comb, the symmetries are 476

the same for both multichannel targets and heliumlike ones. In 477

the geometries with linearly polarized XUV component, there 478

are two additional symmetry planes for heliumlike targets, 479

moreover, for the linearly polarized IR component, they are 480

geometrical and make angle ±π/4 with polarization vector, 481

while for the circularly polarized IR component, they are 482

dynamical and depend on phase between absorption (up) and 483

emission (down) transitions. 484
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