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Abstract. SNAD is an international project with a primary focus on
detecting astronomical anomalies within large-scale surveys, using active
learning and other machine learning algorithms. The work carried out
by SNAD not only contributes to the discovery and classification of var-
ious astronomical phenomena but also enhances our understanding and
implementation of machine learning techniques within the field of astro-
physics. This paper provides a review of the SNAD project and summa-
rizes the advancements and achievements made by the team over several
years.
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1 Introduction

In modern astronomy, discoveries of new objects are based on a huge ow of
data coming from all-sky surveys (e.g., the Sloan Digital Sky Survey, SDSS [7],
the Zwicky Transient Facility, ZTF [5], the Vera Rubin Observatory Legacy
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Survey of Space and Time, LSST [19]). The terabytes of data generated every
night contain information, allowing the discovery of several hundred transients
per year. Undoubtedly, the human resource is limited, and each scientist should
choose from a variety of discovered objects those that are of the greatest interest
to him. However, this is not a trivial task, given the number of transients to
choose from. In addition, the total mass of discovered objects may contain rare
or not yet known phenomena. Thus, we are faced with the problem of classifying
a large number of objects, and specically in this case: the search for anomalies
or outliers.

It is natural to expect that such large volumes of data that are generated in
astronomy today require machine learning (ML) methods for processing. Despite
the fact that ML has become an integral part of data analysis in almost all areas
of science in recent years, astronomy has beneted from it only recently, starting
from solving problems in classication and regression (see, e.g., [21]). In the light
of the search for the most interesting objects among all detected ones anomaly
detection (AD) algorithms have a wide eld of application: would it be search
for galaxies with anomalous spectra [4], transient with extraordinary light curves
[32], or unusual variable stars [27].

However, most of those algorithms are based on statistical models, and the
anomaly is dened as an object that does not t the model. Observational defects
lead to multiple identications of non-physical events as anomalous, giving the
researcher hundreds of candidates for further investigations. To decrease the
amount of “not interesting” objects and to detect the astrophysical anomalies
AD algorithms need some advisory from human in which object should be consid-
ered as anomalous, i.e., active learning (AL) is required. AL is a subclass of ML
algorithms where the user may adjust the model by interactively setting scores
to the objects which are suspicious for the machine. In this learning paradigm,
the user can select which type of object should be considered as anomalous,
extracting some rare classes of objects from the bulk of huge sky-survey data
(see, e.g., [21,40]).

Given to its important impact in the future of astronomical discoveries with
modern data sets, the problem of anomaly detection have already been explored
in the literature. This includes recent studies using data streams [30], deep [12],
generative [38] and active [15,22] methods. Nevertheless, the incidence of false
positives continues to be an important bottle neck to be overcome if we intend
to take full advantage of modern astronomical data. We describe here one of
such attempts, which has been consistently focusing on anomaly detection for
astronomy in the last 5 years.

This paper is an overview of the SNAD project  an international group of
researchers (including astronomers, physicists, data scientists and mathemati-
cians) which focus on developing new AL algorithms for the search for anomalous
objects in large data-sets of all-sky astronomical surveys. In Sect. 2 we provide
the description and main goals of the project and the team, and briey sum-
marise data sources and used techniques. In Sect. 3 the most prominent results
of the project are presented. Section 4 describes some auxiliary products devel-
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oped by the team, which are now publicly available. Section 5 gives conclusive
remarks for future prospects of the project.

2 What is the SNAD Project?

2.1 Goals and Objectives

The goal of the SNAD1 project is to develop a pipeline where human expertise
and modern machine learning techniques can complement each other in the
task of identifying unusual astronomical objects mostly by their photometrical
features. The team concentrates on the search for unusual, rare or yet unknown
objects in the sets of photometric light curves (LCs) by combining dierent AL
AD algorithms with the additional information provided by the expert in order to
label a signicant fraction of the most obvious outliers and choose those which
are true astronomical anomalies. Enabling reliable anomaly/outlier detection
based solely on photometric observations is one of the fundamental puzzles to
be solved before we can convert the full potential of large-scale surveys into
scientic results. This project represents an eective strategy to guarantee we
shall not overlook exciting new science hidden in the data we fought so hard to
acquire.

2.2 Team Members and Expertise

The SNAD team is composed of young researchers, each oering a unique set
of skills and experiences that are utilized within the project. All team members
are involved in various stages of the anomaly detection process, from feature
engineering to expert analysis.

In addition to their collective expertise in anomaly detection, each team
member also contributes their unique knowledge from dierent elds: gamma-
ray bursts (Alina Volnova), supernovae (Maria Pruzhinskaya), fast transients
(Anastasia Lavrukhina), accretion ows in astrophysics (Konstantin Malanchev),
adapting machine learning algorithms (Emille E. O. Ishida), astronomical site
characterization (Matwey Kornilov), time-domain astronomy and photomet-
ric classication (Partick Aleo), astronomical image analysis and dwarf galaxy
detection (Sreevarsha Sreejith), real-bogus classication (Timofey Semenikhin),
aeronautical science (Vladimir Korolev), symbolic regression for light curve anal-
ysis (Etienne Russeil), observational cosmology (Emmanuel Gangler).

Over the years, several other researchers, including Florian Mondon, Anas-
tasia Malancheva, Alexandra Novinskaya, and Anastasiya Voloshina have also
contributed their skills and knowledge to the project.

SNAD activities are designed around annual meetings whose format was
inspired by other initiatives which focused on boosting innovation and creativity
(e.g. the silicon valley model [2] and the Cosmostatistics Initiative2). We also

1 https://snad.space.
2 https://cosmostatistics-initiative.org/.
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invite3 other researchers and students of dierent levels for collaboration in the
eld of astronomical anomalies detection. The resulting environment is one of
the key components which play an important role in the development of products
described in this work.

2.3 Data Sources and Techniques

The rst data-set used for our research was extracted from the Open Supernova
Catalog4 (OSC; [18]). It contains all publicly available data on all SNe from
a dozen of catalogues, including, in dierent cases, multi-colour LCs, spectra,
redshift estimations and classication. We extracted 1999 LCs with the number
of data points enough to t the LC within some particular interval of time relative
to the maximum, and presented in 3 dierent photometric pass-bands (gri, g′r′i′

or BRI ). These 1999 LCs allowed us to test our main ideas by nding several
peculiar and super-luminous SNe, along with a few dozens of miss-classied
objects [32].

The results of the rst try encouraged us to use more numerous data-set of
photometric LCs, and the Zwicky Transient Facility (ZTF) survey data were
chosen. The ZTF survey started on March 2018 and during its initial phase has
observed around a billion objects [5]. Each object is represented with a bunch
of LCs in lters g, r, i with a cadence  on average ∼1 day for the Galactic
plane and ∼3 days for the Northern-equatorial sky. To minimize the aection
of dierent cadences on the results we selected 3 dierent elds: 1 in the M31
galaxy, 1 in the Galactic plane, and 1 far above the Galactic disk and analysed
data from the rst 9.4 months of the ZTF survey, between 17 March and 31
December 2018. The total amount of objects with at least 100 data-point in
the LC is 2.25 millions. The results of the search for anomalies in this set are
described in Sect. 3.

Investigating all data described above we experimented with a series of dif-
ferent anomaly detection algorithms. Our goal was to quantify their eectiveness
in identifying scientically interesting anomalous objects within large data sets.
Among others, we used Isolation Forest (IF) [26], Local Outlier Factor [9], Gaus-
sian Mixture Models [29] and one-class Support Vector Machines [35]. These were
applied to small [32] as well as large [27] data sets with encouraging results.

However, we noticed that frequently, the majority of objects with high
anomaly score represent non-astrophysical articial eects. These were most
times border eects, glitches in the detector, bad CCDs, cosmic rays, unex-
pected telescope movements, satellites, etc. This discovery was important, and
generated an additional line of investigation, described in Sect. 3.4. Nevertheless,
the need of an adaptive algorithm, which could allow the user to dene which
type of anomaly was interesting became increasingly more evident.

We started experimenting with adaptive learning techniques by using the
Active Anomaly Discovery algorithm (AAD) [13], which uses a human-in-the-
loop strategy to apply a series of sequential modications to a traditional IF. By
3 https://snad.space/#contact.
4 https://github.com/astrocatalogs.



Exploring the Universe with SNAD: Anomaly Detection in Astronomy 199

downgrading decision paths which disagree with the expert’s denition of what
is an interesting anomaly the algorithm allows the construction of a personalized
AD model. We showed that this strategy is eective in small [22] and large [31]
data sets. The successful experiences with AAD motivated many of the results
described below.

3 Key Contributions and Discoveries

3.1 Supernova Catalog

The SNAD team discovered potential, unreported supernovaepowerful and
bright explosion of a star, indicating the nal stage of its evolution [8]within
the ZTF DRs during a non-targeted anomaly detection search [27]. This led
to the inception of a new experiment aimed at developing specialized machine
learning models. The AAD algorithm (Sect. 2.3) and the SNAD Transient Miner
(Sect. 4.3) have been trained and rened based on our long-term experience
with supernovae. Applying these algorithms, the SNAD team identied 144 new
supernova candidates hidden within the vast photometric data of the ZTF survey.

Each of these candidates has been thoroughly inspected and validated by
our domain experts. Detailed information about the candidates has been made
publicly available in the SNAD supernova catalog5.

Furthermore, these supernova candidates have also been reported to the
Transient Name Server6 (TNS). The TNS is the ocial resource for announcing
new astronomical transients, and our reports ensure that these candidates are
available for further study by the international astronomical community. With
this dual approach of cataloguing and reporting, we aim to foster collaboration
and further our understanding of supernovae.

3.2 Superluminous Supernova Candidates

Among the supernova candidates discovered using the AAD algorithm (Sect. 2.3)
we report four objects: SNAD120, SNAD121, SNAD160, SNAD187, which could
belong to the superluminous supernovae class. They display an unusually broad
LC when compared to the Nugent’s models7 and multiple redshift estimations
indicate their high absolute brightness [31]. Among them, SNAD160 displays a
particularly broad LC and further analysis indicates that it could belong to the
pair instability supernovae class [33]. It is a theoretical category of thermonuclear
explosions of extremely massive stars, as described by [3] [16]. There have been no
reports of observational conrmation of such event yet and any good candidate
contributes to enrich our understanding of the phenomena.

Additional analysis has been performed by inputting SNAD160 to a symbolic
regression algorithm. It is a machine learning method based on genetic program-
ming [25] that computes a mathematical expression with independent variables
5 https://snad.space/catalog/.
6 https://www.wis-tns.org/.
7 https://c3.lbl.gov/nugent/nugent templates.html.
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Fig. 1. Fit of SNAD160 using Eq. 1 resulting from MvSR procedure. The magnitude
is normalized by subtraction of the peak magnitude.

to optimally ts some input data. We developed a more complex approach of
the algorithm called Multiview symbolic regression (MvSR) [34]. It allows for
the input of multiple datasets supposedly generated by the same parametric
function, and directly returns the common parametric function that generated
the examples. MvSR was applied to SNAD160 with LCs in passbands g and r
being used as two separate datasets. The resulting parametric function describes
transient like behaviors with a linear rising and an exponential decay.

f(t) = A(t + C) × eB(t+C) (1)

It is particularly well tting SNAD160 in both pass-bands as shown in Fig. 1.
It has been applied to other SLSN candidates and provides an accurate represen-
tation of the LCs. With three free parameters, this equation oers a noticeably
dense description of supernova events. Using this representation for further fea-
ture extraction analysis could lead to more interesting SLSN discoveries.

3.3 Red Dwarf Flares

Within the SNAD group, we are currently working on detecting red dwarf ares
in the high cadence data of the ZTF survey releases. Stellar ares are very
energetic phenomena, during which the optical luminosity of a star increases
by several fold over tens of seconds. The currently accepted version of stellar
ares’ nature is a magnetic eld, generated in the convective stellar interior [17].
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The detection of rapid stellar ares, such as those from red dwarfs, is of signif-
icant importance in the eld of exoplanet science, particularly when studying
exoplanet habitability. Additionally, creating a statistically signicant sample of
red dwarf ares can greatly aid in our understanding of the physical processes
involved in these events.

By this time, approximately a hundred new candidates for red dwarf ares
have been found [39]. Some of them were discovered using the AAD algorithm
(Sect. 2.3). Others were detected by tting the LCs with a model that accurately
describes the properties and shape of red dwarf ares’ LCs, followed by further
analysis of the goodness of t. The candidates found using presented methods
are then subject to further analysis and approval by experts within the SNAD
team, with the assistance of the SNAD ZTF Viewer (Sect. 4.1).

Examples of found red dwarf are candidates LCs presented in Fig. 2. Found
candidates vary both by a LC shape (multiple outburst or one outburst are)
and brightness, which allows exploring the complexity of are events and forming
a more comprehensive sample.

Fig. 2. Two examples of red dwarf flares candidates found by SNAD team. (Color
figure online)

3.4 Catalog of Artefacts

Another interesting data product that resulted from the construction of the SNAD
database is the SNAD catalog of artefacts. The term artefact is generally used as
an umbrella term to denote observational, phenomenological or instrumental odd-
ities in signal that manifest as diraction spikes, a step-eect in brightness, colour
saturation etc. to name a few. We are collating a catalog of such occurrences in
the SNAD database that is aimed for both outreach and science goals. The cata-
log consists of the OIDs (identifying number that’s referenced in ZTF), the FITS
images of the respective elds and the SNAD link to the main object page denoted
by the OID. Some examples of the artefacts thus identied are given in Fig. 3.
While spurious in the strictest sense, several of these artefacts present as visually
breathtaking making them perfect for outreach purposes.
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Fig. 3. Some examples from the SNAD catalog of artefacts.

The catalog of artefacts also provides a data set for training machine learn-
ing algorithms that could potentially be used for identifying and/or removing
these objects from elds of interest. Using the labels of 2230 objects from SNAD
knowledge database (Sect. 4.2), roughly half of which are artefacts, we devel-
oped an algorithm that predicts whether an object is an artefact or not based
on the sequence of object frames from the ZTF survey. The algorithm con-
sists of two parts: (1) a variational auto-encoder that returns the compressed
representation of each frame after being trained on all the images from the sam-
ple and, (2) a recurrent neural network that takes the sequence of compressed
frame representations and an object label as inputs, and returns the proba-
bility that the object is an artefact. Currently the best classication result is
ROC − AUC = 0.856 ± 0.010 and Accuracy = 0.802 ± 0.023 [36].

4 Scientific Tools and Resources

4.1 SNAD ZTF Viewer

The SNAD Viewer8 [28] is a web portal specically designed for astronomers,
providing a centralized view of individual objects from various data releases.
It integrates data from multiple publicly available astronomical archives and
sources, thereby oering a comprehensive platform for time-domain data analysis
and interpretation.

In the era of big data in astronomy, the SNAD Viewer emerges as a signi-
cant tool designed to centralize and streamline the management of astronomical
data. Initially conceived to facilitate expert feedback in active machine learning
applications (see Sects. 4.3, 4.4), the SNAD Viewer has evolved into a valuable

8 https://ztf.snad.space.
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community asset. It centralizes public information and provides a multi-
dimensional view of individual objects from the ZTF data releases.

The SNAD Viewer’s infrastructure is characterized by its scalability and
exibility. It is designed to accommodate a wide range of data types and user
needs, demonstrating its adaptability to the changing landscape of astronomical
research. This adaptability extends to its ability to be personalized and used by
other surveys and for various scientic goals, underscoring its broad applicability
within the eld.

Importantly, the SNAD Viewer is not an isolated entity but is part of a
larger network of astronomical data portals. It is linked to by other signicant
portals such as Antares, Fink, YSE PZ, and Astro-COLIBRI, which further
enhances its accessibility and utility within the astronomical community. This
interconnectedness highlights the collaborative nature of modern astronomical
research and the crucial role of the SNAD Viewer within this ecosystem.

The SNAD Viewer is publicly available online, emphasizing its commitment
to open science and the democratization of astronomical data. It serves as a
testament to the crucial roles that domain experts continue to play in the era of
big data in astronomy.

4.2 SNAD Knowledge Database

In addition to the discovery of candidates in anomalies, our research also led
to the creation of a knowledge database. One of the core features of the SNAD
ZTF Viewer (Sect. 4.1) is the ability to assign specic tags to each ZTF object,
a function our experts extensively used when reviewing potential anomalies.
This tagging system incorporates a wide range of general astronomical classes,
including variable stars, transients, active galactic nuclei, along with their various
specic types and subtypes. We also devised custom tags for internal purposes,
as well as non-astrophysical tags like artefacts and their subtypes. Multiple tags
can be assigned to a single object, with the history of tag changes stored in the
database.

During the expert analysis, a total of 72389 objects were labelled. Despite
the ZTF data processing pipeline’s procedure to distinguish astrophysical events
from bogus ones, almost a half of them are artefacts. These assigned labels serve
as a reliable source of curated data for training supervised machine learning
models. Furthermore, they can help to rene the ZTF’s pre-processing pipeline,
ensuring more ecient identication and classication of astronomical events in
the future.

4.3 SNAD Transient Miner

The SNAD Miner is an exhaustive similarity search for LC features for transient
discovery, using simulated LCs as a guide to identify transients in a large dataset

9 on Sep. 18, 2024
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Fig. 4. SNAD Miner schematic. We use bright ZTF SNe simulations (left) and extract
their LC features (left center). Then, we apply a (PCA+) k-D tree on these features, to
search for real ZTF DR events nearest neighbors (right center). Some of these matched
nearest neighbors were previously missed SNe (right).

mostly comprised of variable stars [11]. Specically, it leverages extracted sta-
tistical features from simulated SNe LCs, from which a k-D tree is applied to
search for similar feature values in the ZTF DR4. As a result, we discovered 11
previously missed transients, 7 SNe candidates and 4 AGN candidates.

Realistic ZTF simulations were generated using SNANA [24], with ZTF data
release 3 cadence and magnitude error distribution (see [10] for details). Start-
ing from the template models originally developed for PLAsTiCC, [20,23], we
selected the seven brightest, well-sampled LCs to use as a reference (3 SLSN-I,
1 SN Ia, 1 SN II and 2 TDE with peak magnitude ∼17m).

Using these objects, we applied a k-D tree [6] to their extracted 82 non-
normalized features. Subsequently, we identied the 15 nearest neighbors for
each simulation (105 matches in total, resulting in 89 unique ZTF DR4 sources),
and manually inspected the results. Ultimately, we discovered 11 previously
unreported supernova and active galactic nucleus candidates. The remaining
94 matches (81 unique ZTF DR4 sources) were either known/already reported
transients or variable stars. Given the large number of variable stars previously
estimated in ZTF data releases [11], it is reasonable to expect many well sam-
pled, high-amplitude variable stars whose coverage in parameter space signi-
cantly overlaps with the regions populated by transients (see, e.g. Figure 4 in
[1]). Thus, a ratio of 18 transients (11 newly-discovered) to 44 variable stars
out of 89 unique sources selected from 990,220 considered ZTF sources is a very
successful result. Considering the extreme case where ≈3000 SNe discovered by
ZTF [14] were part of the data set, the expected incidence of SNe when choosing
100 sources at random would be of < 1(≈ 0.3) event.

This “SNAD Miner” process is exible, and can use simulated or real objects
as the input, any number of features, and any number of nearest neighbors to
“mine” in the existing dataset. A schematic is shown in Fig. 4.

4.4 Coniferest Python Library

The coniferest library [37] is aiming to add adaptive capabilities to isolation
forest algorithm which is inherently static.
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The library has implementations of two adaptive learning algorithms. One of
them is an already mentioned earlier AAD algorithm [13]. And the second one
is the implementation of our own adaptive learning isolation forest algorithm
named PineForest. It is based of tree ltering approach. After every new obser-
vation with some label given by an expert the PineForest lters out trees that
do not push forward right observations.

This approach have a few remarkable advantages. First, the algorithm has
not much hyperparameters, so it is easy to tune. Second, it maybe used for both
 as an adaptive learning with an expert in loop and as an accumulator of prior
knowledge about data. Finally, it has a very good performance characteristics
making it suitable for data intensive applications.

Also, as a bonus the library includes our own implementations of clas-
sical isolation forest with much better performance in scoring compared to
scikit-learn’s one. Refer to coniferest package documentation for more
details.

5 Future Directions and Challenges

Large scale sky surveys have fundamentally changed the process of astronomical
investigation and discovery. In the era of LSST, when millions of new transients
will be detected every night, serendipitous discoveries will not happen. On the
other hand, targeted searches are bound to identify objects which fall within our
domain knowledge.

The SNAD team has been consistently working on the development of adapt-
able algorithms and tools which allow the user to probe the boundaries of their
domain knowledge  thus enabling scientic discovery in large data sets. These
have been proven to be eective in current state of the art catalog data.

In the near future we intend to concentrate our eorts in two important
bottlenecks: ensuring that our tools are scalable to meet LSST requirements
and make additional connections with expert communities to guarantee scien-
tic impact of SNAD products. The latter will allow the SNAD team to develop
increasingly more personalized tools which will fulll the requirements of indi-
vidual experts and ensure that we can fully exploit the scientic potential of
modern astronomical surveys.
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