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Abstract. In this paper a one-line queueing system with two priority
classes, relative priority, Poissonian input flow with random intensity and
infinite number of places in queue for waiting is considered. The current
intensity value is taken at the beginning of the time reckoned for the
arrival of the next requirement. Successive values of the flow intensity
form a Markov chain of a special kind. This input flow structure allows to
take in consideration not only mathematical expectation and variance,
but also correlation between interval of two next arrivals. The main result
is the limit distribution of the queue length for the least priority class, it is
obtained in an explicit form. Also, analytical expressions for the density
function, mathematical expectation and variance are given. Numerical
examples, which show difference among limit distributions (for different
parameters) for studied cases are provided.

Keywords: Poissonian flow · random intensity · relative priority ·
queue length · heavy traffic

1 Introduction

The main goal of this paper is to study the behaviour of the queue length of the
lowest priority class in the queueing system with the autoregressive input flow
(will be fully described in Sect. 2). The relevance of this research is determined
by the fact that the vast majority of real service systems in many applied areas
operate under conditions of either the heavy load or close to the heavy load. For
instance, the widespread distribution of communication networks has led to a
sharp increase in the volume of network traffic, and, therefore, an increase in the
load on these networks, most of which have become highly loaded. It also lead
us to the relevance of considering exactly this structure of the incoming flow. In
[2,3] the authors have shown that there is a stochastic dependence between an
inter-arrival time of two adjacent requests.
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The key purpose of this study is to find the limit distribution of the queue
length of the lowest priority class. In addition, the probability density function,
mathematical expectation and variance are given for the limit distribution. It
should be mentioned that there is a huge amount of papers and monographs
dedicated to studying queueing systems under the heavy traffic condition [4–16].

The paper has the following structure. In Sect. 2 the studied system is fully
described. In Sect. 3, the results from [1], which will be used during the research,
are given. Section 4 consists of two parts: in the first one some auxiliary expan-
sions in a series are obtained, in the second one the main theorem is proved. In
Sect. 5, some numerical examples are given.

2 System Definition

In this work sequence of queuing systems (the series scheme) is researched; m-th
queueing system has the following structure. The structure of arrivals is time
zm1 before the arrival of the first requirement and interval zmn between (n −
1) - th and n-th requirement have an exponential distribution with random
parameter a

(n)
m , n = 1, 2, . . . . Value a

(n)
m is selected just before the beginning of

interval zmn such that, P(a(1)
m = amj) = cmj , ami �= amj , i �= j, cmj > 0, j =

1, N,
N∑

j=1

cmj = 1 and a
(n)
m = ξm ·a(n−1)

m +(1−ξm) ·b(n)m , where b
(n)
m , n = 1, 2, . . . ,

a
(n)
m , n = 1, 2, . . . , and ξm are independent random variables. The distribution

of the random variables a
(n)
m and b

(n)
m coincides with the distribution of a

(1)
m ,

n = 1, 2, . . . , and ξm has Bernoulli distribution with parameter pm.
It is easy to show that

P(zmn < t) =
N∑

j=1

cmj(1 − e−amjt)

P(zmn < t1, zm,n+k < t2) = (1 − pk
m)

N∑

j=1

cmj(1 − e−amjt1)

N∑

k=1

cmk(1 − e−amjt2)+

+ pk
m

N∑

k=1

cmk(1 − e−amjt1)(1 − e−amjt2)

Ezmn =
N∑

j=1

cmj

amj
, Dzmn =

N∑

j=1

cmj

a2
mj

, corr(zmn, zm,n+k) =
pk

m

2

(

1 − (Ezmn)2

Dzmn

)

(1)
Further m will be used in indexes only where it is necessary to highlight depen-
dence on m.

There are two special cases: p = 0 and p = 1, in the first one the input
flow is hyper-exponential, in the second one: we obtain a system such that the
initial intensity is randomly selected from the set {a1, . . . , aN} with probabilities
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c1, . . . , cN respectively, and afterward acts as a system with a Poissonian input
flow with the chosen intensity (this case is not considered in this work).

From (1), it follows that if μ > 0 and σ > μ, there exists second-order
flow (N = 2) such that it belongs to the class of flows considered in this work,
and its expectation and variance of intervals between arrivals are equal to μ

and σ2, respectively. The correlation coefficient is equal to p
2

(
1 − (

μ
σ

)2
)
. While

mathematical model of real system is being constructed, it is possible to adjust
the first two moments of the real arrival process and their dependence.

All arriving requirements are divided into 2 classes with probabilities
p1, p2 (p1 + p2 = 1), respectively, and it does not depend on other requirements.
We firstly assume that each type of requirement forms its own queue. Secondly,
if a service is started, it is never interrupted. The studied system operates under
the relative priority discipline.

We assume that the system is free of requirements for t = 0 and serving
lengths are independent random variables equally distributed for requirements
of each particular type. The distribution function is Bmi(x) and the density
is bmi(x) for ith class and mth system , i = 1, 2; βmi(s) — Laplace-Stieltjes
transform of function bmi(x), i = 1, 2; βmij – j th moment of random variable
with Bmi(x) distribution function.

L(t) = (L1(t), L2(t)) – amount of requirements in a system in time t.

It is known that if
(

N∑

i=1

cja
−1
j

)−1

· (p1β11 + p2β21) < 1 the non-degenerate

limit distribution of stochastic process L(t) exists. In this work, L2(t) is studied

in case while t → ∞ and
(

N∑

i=1

cmja
−1
mj

)−1

· (pm1βm11 + pm2βm21) → 1,m → ∞.

We will study the system under the next assumptions:

I) the first and the second moment of service time distribution exist (for each
priority class) and

βi(s) = 1 − βi1s +
βi2

2
s2 + om(s2), i = 1, 2,

where om(s2)/s2 → 0 while s → 0 uniformly on variable m
II) for each m ∈ {1, 2, . . . }: am(p1βm11 + p2βm21) < 1

III) following limits exist lim ci = c∗
i , lim ai = a∗

i , lim βij = β∗
ij , lim pj =

p∗
j , i = 1, N, j = 1, 2, where lim denote lim

m→∞.
The main goal of this study is to find

lim
m→∞P

(

ργ · L2

(
t

ρα

)

< x

)

where

ρ = 1 − a(p1β11 + p2β21), a =

(
N∑

i=1

cj

aj

)−1

, γ =

{
0.5α, α � 2,

1, α > 2.



22 A. Bergovin and V. Ushakov

3 Preliminaries

In [1] expressions which Laplace-Stieltjes transform of generating function of
queue length is satisfied has been found. They will be used to find the limit
distribution. Let us write them.

Lemma 1. Equation

(1 − p)z
N∑

m=1

amcm

μ(z) + am (1 − pz)
= 1,

has N continious in domain |z| � 1 solutions μ = μk(z), k = 1, . . . , N, that :

1) only one function μk(z) is equal to 0 while z = 1;
2) �(μj(z)) < 0 for all j = 1, . . . , N and |z| < 1;
3) μi(z) �= μj(z) while i �= j.

Denote αk(z) =
∏

j �=k

[μk(z) − μj(z)].

Lemma 2. For each k = 1, . . . , N system of equations

z1 = β1(s − μk(p1z1 + p2z2)),

z2 = β2(s − μk(p1z1 + p2z2)),

has a unique solution zi = zik(s), such, that |zik(s)| < 1 while k =
2, . . . , N, �s ≥ 0, and zi1(0) = 1, |zi1(s)| < 1 while �s > 0, i = 1, 2.

Lemma 3. Laplace-Stieltjes transform of joint generating function of queue
length for the first and the second classes is

p(z1, z2, s) = p0(s)+

+
p1z1 + p2z2 − 1

(1 − p)(p1z1 + p2z2)
×

N∑

k=1

1
μk(p1z1 + p2z2)(s − μk(p1z1 + p2z2))

×

×
[

γ
(k)
1 (z1, z2, s)[1 − β1(s − μk(p1z1 + p2z2))]+

+ γ
(k)
2 (z1, z2, s)[1 − β2(s − μk(p1z1 + p2z2))]

]

,
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where functions γ
(k)
i (z1, z2, s), i = 1, 2, k = 1, N satisfy :

γ
(k)
1 (z1, z2, s)

z1 − β1(s − μk(p1z1 + p2z2))
z1

+

+ γ
(k)
2 (z1, z2, s)

z2 − β2(s − μk(p1z1 + p2z2))
z2

=

=
(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

m=1

[μk(p1z1 + p2z2) + am(1 − p(p1z1 + p2z2))]×

×
N∑

j=1

cjajfj(z1, z2, s)
μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))

;

fj(z1, z2, s) = 1 − (s + aj(1 − p(p1z1 + p2z2))c−1
j p0j(s)+

+ (p1z1 + p2z2)(1 − p)
N∑

k=1

akp0k(s), j = 1, N,

γ
(k)
1 (z1, z2, s) =

(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

j=1

[μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))]×

×
N∑

e=1

aep1e(z1, z2, 0, s)

μk(p1z1 + p2z2) + ae(1 − p(p1z1 + p2z2))
;

γ
(k)
2 (z1, z2, s) =

(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

j=1

[μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))]×

×
N∑

e=1

aep2e(z2, 0, s)

μk(p1z1 + p2z2) + ae(1 − p(p1z1 + p2z2))
.

functions p0j(s) might be found from:

p0j(s) =
1

aj

N∑

l=1

1 − p(p1z∗
l1 + p2z∗

l2)

(1 − p)(p1z∗
l1 + p2z∗

l2)(s − μ∗
l (s))

· 1∏
n�=j

(aj − an)
×

×
(

μ∗
l (s)

1 − p(p1z∗
l1 + p2z∗

l2)
+ aj

)−1

×

×
∏

l�=n

(
μ∗

l (s)

1 − p(p1z∗
l1 + p2z∗

l2)
− μ∗

n(s)

1 − p(p1z∗
n1 + p2z∗

n2)

)−1

×

×
N∏

k=1

(μ∗
k(s) + aj(1 − p(p1z∗

k1 + p2z∗
k2))(μ

∗
l (s) + ak(1 − p(p1z∗

l1 + p2z∗
l2))

(1 − p(p1z∗
k1 + p2z∗

k2))(1 − p(p1z∗
l1 + p2z∗

l2))
, (2)

where μ∗
k(s) = μk(p1z∗

k1 + p2z∗
k2)
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4 Main Result

To prove the main theorem, some auxiliary expansions in a series are needed,
which would be formulated as separate lemmas.

4.1 Auxiliary Expansions in a Series

Lemma 4. The next asymptotics for z(sρα) are true:

z(sρα) − 1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
√

sρα

a2v
+ o(ρ

α
2 ), α < 2,

ρ · 1 − √
1 + 4sv
av

+ o(ρ), α = 2,

−sρα−1

a
+ o(ρα−1), α > 2,

where

v =
a(p1β12 + p2β22)

2
+

1
a(1 − p)

(

a2
N∑

i=1

cj

a2
j

− 1

)

,

z(s) = p1z1(s) + p2z2(s) is the solution of equation
p1z1 + p2z2 = p1β1(s − μ1(p1z1 + p2z2)) + p2β2(s − μ1(p1z1 + p2z2)).

Proof. Using assumption I and Lemma 2 it is possible to write

z(sρα) = 1− (sρα −μ1(z(sρ
α))) ·β1+(sρα −μ1(z(sρ

α)))2 · β2

2
+o((sρα −μ1(z(sρ

α)))2), (3)

where βi = p1β1i + p2β2i, i = 1, 2.
Also, we may write next expansion for function μ1(p1z1 + p2z2):

μ1(z(sρα)) = μ
′
1(1)(z(sρα) − 1) +

μ
′′
1 (1)
2

(z(sρα) − 1)2 + o((z(sρα) − 1)2). (4)

Substitute (3) in (4), after easy manipulations quadratic equation for z(sρα) − 1
is obtained:

av · (z(sρα)− 1)2 − ρ · (z(sρα)− 1)− β1 · sρα + o(max((z(sρα)− 1)2, ρ · (z(sρα)− 1), ρα)) = 0,

its solutions:

z(sρα) − 1 =
ρ ±

√
ρ2 + 4 sραv

2av
+ o(z(sρα) − 1).

from here asymptotics in the lemma statement are obtained.

Corollary 1. Asymptotic expansion for μ∗
1(sρ

α) is:

μ∗
1(sρ

α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
√

sρα

v
+ o(ρ

α
2 ), α < 2,

−ρ · 2 s

1 +
√

1 + 4sv
+ o(ρ), α = 2,

−sρα−1 + o(ρα−1), α > 2.
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This expansion is obtained directly from Lemma 4 and (4)

Lemma 5. The next asymptotics for p0j(sρα) are true :

p0j(sρα) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κj ·
√

v

s
· ρ− α

2 + o(ρ− α
2 ), α < 2,

κj · 1 +
√

1 + 4sv

2 s
· ρ−1 + o(ρ−1), α = 2,

κj
ρ1−α

s
· +o(ρ1−α), α > 2,

where

κj =
∏

n�=j

an

an − aj
·

N∏

k=2

μ∗
k(0) + aj(1 − p(p, z∗

k(0)))
μ∗

k(0)
.

Proof. Since, only μ1(1) = 0 then from (2):

ραp0j(sρα) =
ρα

sρα − μ∗
1(sρα)

×
∏

n�=j

an

an − aj
·

N∏

k=2

μ∗
k(0) + aj(1 − p(p, z∗

k(0)))
μ∗

k(0)
.

Therefore and from corollary 1, lemma statement is obtained.

Lemma 6. The next asymptotics for μ1(p1z∗
1 + p2e

−uργ

) are true:

μ1(p1z∗
1 + p2e

−uργ

) =
ap2uργ

ap1β11 − 1
+ ψρ2γ + o(ρ2γ), where

ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ap1β11

ap1β11 − 1
s +

ap2u2

2(1 − ap1β11)
+

μ
′′
1 (1)

2

p22u2

(1 − ap1β11)3
+

p1β12a3p22u2

2(1 − ap1β11)3
, α � 2,

ap2u2

2(1 − ap1β11)
+

μ
′′
1 (1)

2

p22u2

(1 − ap1β11)3
+

p1β12a3p22u2

2(1 − ap1β11)3
, α > 2.

Proof. Since p1z
∗
1 + p2e

−uργ

= p1β1(sρα − μ1(p1z∗
1 + p2e

−uργ

)) + p2e
−uργ

.
Denote: τ = p1z

∗
1 + p2e

−uργ

. Using the assumption II we have

τ = p1

(

1 − β11(sρα − μ1(τ)) +
β12

2
((sρα − μ1(τ)))2

)

+

+ p2

(

1 − uργ +
u2ρ2γ

2

)

+ o(ρ2γ). (5)

Using the asymptotics for μ1(τ) and separate the principal part with degree ργ

we have
τ − 1 =

p2uργ

ap1β11 − 1
+ +ψρ2γ + o(ρ2γ). (6)

Substitute (6) in (5), ψ might be found.
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Lemma 7. The next asymptotics are true:

N∑

j=1

fj(z∗
1 , e−uργ

, sρα)
cjaj

μ1(p1z∗
1 + p2e−uργ ) + aj(1 − p(p1z∗

1 + p2e−uργ ))
=

=
1

1 − p
×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 +
ap2u

ap1β11 − 1

√
v

s
+ o(1), α < 2,

1 +
ap2u

ap1β11 − 1
1 +

√
1 + 4sv
2 s

+ o(1), α = 2,

1 +
ap2uρ2−α

ap1β11 − 1
1
s

+ o(ρ2−α), α > 2.

Proof. Using the definition of fj(z1, z2, s), j = 1, N , the investigated expression
might be rewritten in the next form:

N∑

j=1

fj(z∗
1 , e−uργ

, sρα)
cjaj

μ1(p1z∗
1 + p2e−uργ ) + aj(1 − p(p1z∗

1 + p2e−uργ ))
=

=
1

(1 − p)(p1z∗
1 + p2e−uργ )

− (sρα − μ1(p1z∗
1 + p2e

−uργ

))×

×
N∑

j=1

ajp0j(s)
μ1(p1z∗

1 + p2e−uργ ) + aj(1 − p(p1z∗
1 + p2e−uργ ))

+ o(ρ2γ).

After using Lemma 5 and the fact that
N∑

j=1

κj = 1, the lemma statement is

obtained.

Lemma 8. The next asymptotics are true:

e−uργ − β2(sρα − μ1(p1z∗
1 + p2e

−uργ

)) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β21ρ
2γ

ap1β11 − 1
×

[

− s +
a2p22v

(ap1β11 − 1)2
u2

]

+ o(ρ2γ), α < 2,

ρ2

ap1β11 − 1
×

[

u − β21s +
a2p22β21v

(ap1β11 − 1)2
u2

]

+ o(ρ2), α = 2,

ρ2

ap1β11 − 1
×

[

u +
a2p22β21v

(ap1β11 − 1)2
u2

]

+ o(ρ2), α > 2.

Proof. These expressions might be obtained directly from Lemma 6 and the
following expansion

e−uργ − β2(sρα − μ1(p1z∗
1 + p2e

−uργ

)) =

= 1−uργ+
u2ρ2γ

2
−1+β21

[

sρα− ap2uργ

ap1β11 − 1
−ψρ2γ

]

−β22

2

[
ap2uργ

ap1β11 − 1

]2

+o(ρ2γ).



The Limit Distribution of the Queue 27

4.2 Main Theorem

Theorem 1. While m → ∞ the next limit exists

lim
m→∞P

(

ργ · L2

(
t

ρα

)

< x

)

=

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
π

·

√
v∗
2t wx∫

0

e− y2

2 dy, α < 2,

1 − e−wx

√
π

+∞∫

−
√

t
4v∗ +wx

√
v∗
4t

e−y2
dy − 1√

π

+∞∫

√
t

4v∗ +wx
√

v∗
4t

e−y2
dy, α = 2,

1 − e−wx, α > 2,

where
w =

1 − a∗p∗
1β

∗
11

a∗p∗
2v

∗ .

Proof. Instead of finding lim
m→∞P

(
ργ · L2

(
t

ρα

)
< x

)
, we will find lim

ρ→0
ρα ·

p(1, e−uργ

, sρα) and then inverse the Laplace transform to obtain the original
limit distribution.
Using the expression from Lemma 3, the investigated limit might be rewritten
in the next form:

lim
ρ→0

{
ρα · p0(sρ

α) + ρα · p2(e
−uργ − 1) · 1

μ1(p1 + p2e−uργ
)(sρα − μ1(p1 + p2e−uργ

))
×

×
[
γ
(1)
2 (1, e−uργ

, sρα)
1 − e−uργ

(1 − p)e−uργ β2(sρ
α − μ1(p1 + p2e−uργ

))+

+

N∏
m=1

[μ1(p1 + p2e−uργ
) + am(1 − p(p1 + p2e−uργ

))]

α1(p1 + p2e−uργ
)

×

×
N∑

j=1

cjajfj(1, e
−uργ

, sρα)

μ1(p1 + p2e−uργ
) + aj(1 − p(p1 + p2e−uργ

))

]}
.

Considering the fact, that lim
ρ→0

ραp0(sρα) → 0 from lemma 5, μ1(p1+p2e
−uργ

) =

ap2uργ + o(ργ). From Lemma 1 it is possible to find

α1(1) =
N∏

m=2

(−μm(1)) =
1

a(1 − p)

N∏

m=1

(am(1 − p)),

then

lim
ρ→0

N∏
m=1

[μ1(p1 + p2e−uργ
) + am(1 − p(p1 + p2e−uργ

))]

α1(p1 + p2e−uργ
)

=

N∏
m=1

(am(1 − p))

α1(1)
= a(1 − p).
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So that, the task is equal to finding the next limit:

lim
ρ→0

{
ρα

a2p2(1 − p)(p1 + p2e−uργ )
γ
(1)
2 (1, e−uργ

, sρα)+

+
∏N

m=1(am(1 − p))
∏N

m=2(−μm(1))

ρα−γ

a2p2u

N∑

j=1

cjajfj(1, e−uργ

, sρα)
μ1(p1 + p2e−uργ ) + aj(1 − p(p1 + p2e−uργ ))

}

.

Similary to the proof of the Lemma 7, we have

lim
ρ→0

ρα−γ

a2p2u

N∑

j=1

fj(1, e
−uργ

, sρα)
cjaj

μ1(p1 + p2e−uργ
) + aj(1 − p(p1 + p2e−uργ

))
= 0 ∀α > 0.

Therefore,

lim
ρ→0

ραp(1, e−uργ

, sρα) = lim
ρ→0

ραγ
(1)
2 (1, e−uργ

, sρα)
a2p2(1 − p)(p1 + p2e−uργ )

=

= lim
ρ→0

∏N
m=1(am(1 − p))

α1(1)(1 − p)a2p2

N∑

e=1

ραp2e(e−uργ

, 0, sρα) =

= lim
ρ→0

1
ap2

N∑

e=1

ραp2e(e−uργ

, 0, sρα) = lim
ρ→0

1
p2a2(1 − p)

ραγ
(1)
2 (z∗

1 , e−uργ

, sρα).

From the definition of γ
(1)
2 (z1, z2, s), we have

lim
ρ→0

ραγ
(1)
2 (z∗

1 , e−uργ

, sρα)
p2a2(1 − p)

=

= lim
ρ→0

(p1z∗
1 + p2e

−uργ

)e−uργ · ρα

p2a2α1(p1z∗
1 + p2e−uργ ) · [e−uργ − β2(sρα − μ1(p1z∗

1 + p2e−uργ ))]
×

×
N∏

m=1

[μ1(p1z∗
1 + p2e

−uργ

) + am(1 − p(p1z∗
1 + p2e

−uργ

))]×

×
N∑

j=1

cjajfj(z∗
1 , e−uργ

, sρα)
μ1(p1z∗

1 + p2e−uργ ) + aj(1 − p(p1z∗
1 + p2e−uργ ))

=

= lim
ρ→0

(1 − p)ρα

p2a[e−uργ − β2(sρα − μ1(p1z∗
1 + p2e−uργ ))]

×

×
N∑

j=1

cjajfj(z∗
1 , e

−uργ

, sρα)
μ1(p1z∗

1 + p2e−uργ ) + aj(1 − p(p1z∗
1 + p2e−uργ ))

.
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Using Lemmas 7 and 8, we have

lim
ρ→0

ραp(1, e−uργ
, sρα) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
s ·

(
1 +

a∗p∗
2u

1 − a∗p∗
1β∗

11

√
v∗

s

)]−1

, α < 2,

[
s ·

(
1 +

a∗p∗
2u

1 − a∗p∗
1β∗

11

· 2v∗

1 +
√
1 + 4sv∗

)]−1

, α = 2,

[
s ·

(
1 +

a∗p∗
2v∗

1 − a∗p∗
1β∗

11

u

)]−1

, α > 2.

After inversing the Laplace transform, the theorem statement is obtained.

Corollary 2. Probability density function of the limit distribution is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
v∗

πt
w · exp

{
−v∗w2x2

4t

}
, α < 2,

we−wx

√
π

+∞∫

−
√

t
4v∗ +wx

√
v∗
4t

e−y2
dy + w

√
v∗

4πt
×

×
(

exp

{
−wx −

(
−

√
t

4v∗ + wx
√

v∗
4t

)2
}

+ exp

{(√
t

4v∗ + wx
√

v∗
4t

)2
})

, α = 2,

w · exp{−wx}, α > 2.

Corollary 3. Mathematical expectation of the limit distribution is equal to
√

t

v∗π
· 2
w

, if α < 2,

and
1
w

, if α > 2.

Corollary 4. Variance of the limit distribution is equal to

(2π − 4)t
πv∗w2

, if α < 2

and
1

w2
, if α > 2.

Remark 1. Mathematical expectation and variance in case α = 2 should be
calculated using numerical methods.

5 Numerical Examples

For visualisation results of this paper let us consider the system with parameters:
n = 2, a1 = 1, a2 = 2, c1 = 0.35, c2 = 0.65, β11 = 0.5749, β21 = 0.775, β12 =
1, β22 = 1, p = 0.5, p1 = 0.5, p2 = 0.5. The plots below show the density functions
for all different cases for α and for different parameter t.

Also let us show, how mathematical expectation is changing, while param-
eters p2 or p are being changed, the main parameters of the system are
n = 2, a1 = 1, a2, c1 = 0.2, c2 = 0.8, the other parameters has been chosen
such way that ρ is close to 0 (Figs. 1, 2, 3 and Tables 1, 2).
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Fig. 1. t = 0.1

Fig. 2. t = 0.5
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Fig. 3. t = 2.5

Table 1. Mathematical expectation while the probability of going to the lowest class
is being changed

p2 t = 0.1 t = 1 t = 10

α < 2 α = 2 α > 2 α < 2 α = 2 α > 2 α < 2 α = 2 α > 2

0.05 0.595 0.522 1.802 1.882 1.242 1.802 5.952 1.785 1.802

0.25 0.605 0.53 1.83 1.912 1.261 1.83 6.046 1.813 1.83

0.5 0.617 0.541 1.867 1.95 1.286 1.867 6.167 1.849 1.867

0.75 0.629 0.552 1.905 1.99 1.313 1.905 6.292 1.887 1.905

0.95 0.64 0.561 1.936 2.023 1.334 1.936 6.397 1.918 1.936

Table 2. Mathematical expectation while the probability of repeating intensity is being
changed:

p t = 0.1 t = 1 t = 10

α < 2 α = 2 α > 2 α < 2 α = 2 α > 2 α < 2 α = 2 α > 2

0.05 0.561 0.483 1.493 1.106 1.493 1.493 1.488 1.493 1.493

0.25 0.566 0.489 1.524 1.122 1.524 1.524 1.518 1.524 1.524

0.5 0.58 0.502 1.598 1.161 1.598 1.598 1.59 1.598 1.598

0.75 0.619 0.541 1.818 1.275 1.818 1.818 1.804 1.818 1.818

0.95 0.868 0.789 3.581 2.023 3.581 3.581 3.425 3.581 3.581
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6 Conclusion

The main result of this paper is an explicit form of the limit distribution of the
queue length for the least priority class, which has been obtained. For each cases
(α < 2, α = 2 and α > 2) expressions for the density function are obtained. For
cases (α < 2 and α > 2) mathematical expectation and variance are given in
explicit form, in case α = 2 these characteristics might be calculated numerically.
Numerical examples show us necessity to consider parameter t, since relation
among considered cases is changing while t is being changed. Provided theoretical
results of this article can be used to analyse real queueing systems in which there
is a correlation of the intervals between customer arrivals.

References

1. Bergovin, A.K., Ushakov, V.G.: Discipline-priority queuing systems without serv-
ing interruptions. Moscow Univ. Comput. Math. Cybern. 42(3), 119–125 (2018).
https://doi.org/10.3103/S0278641918030032

2. Gusella, R.: Characterizing the variability of arrival processes with indexes of dis-
persion. IEEE J. Sel. Areas Commun. 2, 203–211 (1991). https://doi.org/10.1109/
49.68448

3. Paxson, V., Floyd, S.: Wide-Area Traffic: the failure of poisson modelling.
IEEE/ACM Trans. Netw. (ToN) 3, 226–244 (1995). https://doi.org/10.1109/90.
392383

4. Hwang, G.U., Choi, B.D., Kim, J.-K.: The waiting time analysis of a discrete-time
queue with arrivals as an autoregressive process of order 1. J. Appl. Probab. 3,
619–629 (2002). https://doi.org/10.1239/jap/1034082132

5. Kamoun, F.: The discrete-time queue with autoregressive inputs revisited. Queue-
ing Syst., 185–192 (2006). https://doi.org/10.1007/s11134-006-9591-3

6. Prokhorov, Y.V.: Transitional phenomena in queuing processes. Lith. Math. Col-
lection 3(1), 199–206 (1963)

7. Kingman, J.F.C.: On queues in heavy traffic. J. Rey. Stat. Soc. B-25, 383–392
(1962). https://doi.org/10.1111/j.2517-6161.1962.tb00465.x

8. Borovkov, A.A.: Asymptotic methods in queuing theory. M., Nauka, 357 (1979)
9. Nazarov, A.A., Moiseeva, S.P.: Method of Asymptotic Analysis in Queuing Theory,

p. 112. Tomsk state University, Tomsk (2006)
10. Garayshina, I.R., Moiseeva, S.P., Nazarov, A.A.: Methods for studying correlated

flows and special queuing systems Tomsk: NTL Publishing House, p. 206 (2010)
11. Nazarov, A., Paul, S., Lizyura, O.: Asymptotic analysis of Markovian retrial queue

with unreliable server and multiple types of outgoing calls. Global Stoch. Anal.
8(3), 143–149 (2021)

12. Danielyan, E.A.: Description of one class of limit distributions in single-channel
priority systems, pp. 48–52. VNIISI, Queuing theory. M. (1981)

13. Ushakov, A.V.: Heavy-traffic analysis for the queueing system with hyper expo-
nential stream. Inform. Appl. 6(3), 117–121 (2012)

14. Hooke, J.A.: Some heavy-traffic limit theorems for a priority queue with general
arrivals. Operat. Res. 20, 381–388 (1972). https://doi.org/10.1287/opre.20.2.381

15. Hooke, J.A., Prabhy, N.V.: Priority queues in heavy traffic. Opns. Res., 1–9 (1971)
16. Abate, J., Whitt, W.: Asymptotics for M—G—1 low-priority waiting-time tail

probabilities. Queueing Syst. 25, 173–233 (1997)

https://doi.org/10.3103/S0278641918030032
https://doi.org/10.1109/49.68448
https://doi.org/10.1109/49.68448
https://doi.org/10.1109/90.392383
https://doi.org/10.1109/90.392383
https://doi.org/10.1239/jap/1034082132
https://doi.org/10.1007/s11134-006-9591-3
https://doi.org/10.1111/j.2517-6161.1962.tb00465.x
https://doi.org/10.1287/opre.20.2.381

