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Abstract Eukaryotic translation termination is mediated

by two interacting release factors, eukaryotic class 1

release factor (eRF1) and eukaryotic class 3 release factor

(eRF3), which act cooperatively to ensure efficient stop

codon recognition and fast polypeptide release. eRF1

consisting of three well-defined functional domains rec-

ognizes all three mRNA stop codons located in the A site

of the small ribosomal subunit and triggers hydrolysis of

the ester bond of peptidyl-tRNA in the peptidyl transfer

center of the large ribosomal subunit. Nevertheless, various

aspects of molecular mechanism of translation termination

in eukaryotes remain unclear. Elucidation of the structure

and dynamics of eRF1 in solution is essential for under-

standing molecular mechanism of its function in translation

termination. To approach this problem, here we report

NMR backbone signal assignments of the human eRF1

(437 a.a., 50 kDa).
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Abbreviations

C-domain eRF1 C-terminal domain

eRF1 Eukaryotic class 1 release factor

eRF3 Eukaryotic class 2 release factor

M-domain eRF1 middle domain

N-domain eRF1 N-terminal domain

PTC Peptidyl transferase center of the ribosome

RF Prokaryotic release factor

SAXS Small angle X-ray scattering

Biological context

Translation termination on eukaryotic ribosome occurs in

response to a stop codon in the ribosomal A-site and is

mediated by the two interacting polypeptide chain release

factors eRF1 and eRF3 (Dever and Green 2012; Jackson

et al. 2012; Kisselev et al. 2003). Key participant of this

process is a class I termination factor, eRF1, which binds to

the A site of the ribosome and recognizes all three mRNA

stop codons in the decoding site of the small ribosomal

subunit. After the transfer of termination signal from the

small ribosomal subunit to the peptidyl transferase center

(PTC) of the large ribosomal subunit, eRF1 triggers the

hydrolysis of pypidyl-tRNA ester bond in PTC which leads

to the release of nascent protein. Although analogous in

function the molecular mechanism of the translation ter-

mination in eukaryotes and prokaryotes are different.

Bacteria has two class 1 release factors, RF1 and RF2, and
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each recognizes two out of three stop codons with over-

lapping specificity. In contrast, eukaryotes employs a sin-

gle eRF1 to recognize all three stop codons. Translation

termination in prokaryotes and eukaryotes also requires

class two release factors, RF3 and eRF3, both are ribo-

some-dependent GTPases but with limited homology and

different in fuction (Jackson et al. 2012; Klaholz 2011).

The mechanism of stop codon decoding in eukaryotes by

eRF1 have been intensively studied by combination of

kinetic, biochemical and genetic approaches and several

models of eukaryotic stop codon recognition have been

proposed (Muramatsu et al. 2001; Kisselev et al. 2003;

Kryuchkova et al. 2013). However, there is no established

mechanism capable of explaining the potency of eRF1 to

decode all three stop codons (UAA, UAG and UGA). Little

is known about the molecular mechanism by which the

termination signal is transferred from the small to the large

ribosomal subunit, to trigger subsequent peptidyl-tRNA

ester bond hydrolysis. Principal obstacles to understand

details of the molecular mechanism of translation termi-

nation in eukaryotes arise from the limited structural data

available.

Crystal structure at atomic resolution was recently

obtained for ribosomes from low eukaryotes, S. cerevisiae

(Ben-Shem et al. 2011), however X-ray structure of

eukaryotic translation termination complexes has not yet

been reported. At present only the crystal structure of the

human eRF1 was reported (Song et al. 2000). eRF1 con-

sists of three structurally independent domains, each of

which can be assigned with a specific function. The

N-terminal domain (residues 1–142) is involved in the stop

codon recognition. The middle (M) domain (residues

143–275) contains the strictly conserved GGQ motif that

extends into the PTC and is essential in promoting

hydrolysis of the peptidyl-tRNA ester bond. The C-domain

(residues 277–437) of eRF1 binds to eRF3 and this inter-

action increases the efficiency of translation termination.

However, the crystal structure of eRF1 has relatively low

resolution (2.8 Å) and the middle and C-terminal protein

domains are poorly defined.

Small angle X-ray scattering studies of human eRF1

(Kononenko et al. 2004) showed that the overall shape of

eRF1 in solution is similar to that in crystal, however

conformational dynamics arising from the flexible linkers

connecting the three domains could not be assessed from

the SAXS data. Recently we have determined the high

resolution NMR structures of all three domains of human

eRF1: N-domain (Polshakov et al. 2012), M-domain (Iva-

nova et al. 2007) and C-domain (Mantsyzov et al. 2010).

Noticeable differences between solution structure and

crystal structure were found for all three domains. Among

the most important discrepancies are: (1) The orientations

of the long helix-loop of the M-domain (residues 176–200),

which contains strictly conserved and functionally impor-

tant GGQ tripeptide, are different in the two structures; and

(2) The mini-domain containing residues 329–372 is

observable in solution but is missing in the crystal struc-

ture, presumably due to mobility or disorder of this protein

fragment. In order to elucidate the structure and dynamics

of the full length human eRF1, NMR assignments for the

protein backbone resonances have been obtained.

Methods and experiments

The full-length cDNA encoding human eRF1 with the

C-terminal His6-tag fusion was cloned into pET23b(?)

vector (Novagen) under the control of phage T7 RNA

polymerase promoter. The full size eRF1 (residues 1–437)

was overproduced in E. coli, strain BL21(DE3)/pUBS, in

M9 medium. For uniform 2D, 13C and 15N isotope labeling,

[13C6,2D7]-D-glucose (Isotec Stable Isotopes) and 15NH4Cl

(Cambridge Isotope Laboratories Inc.) were used as the

isotope sources in M9 minimal medium in 99.9 % D2O

solvent. Protocol for bacterial growth in D2O was similar to

that described earlier (Gardner and Kay 1998) with minor

modifications. These include two-step increase of D2O

concentration (50 and 75 %) during the initial stage of the

growth of bacterial colony in small (50 ml) volume, before

replanting of the cells in larger volume of M9 media in

100 % D2O. Such gradual increase allows easier adaptation

of the E. coli cells to deuterium oxide. Typically, level of

expression of the 2D,13C,15N-labelled human eRF1 was

*40 mg/L. The protein was isolated using Ni–NTA resin

(Qiagen) and additionally purified by cation exchange

chromatography using HiTrap SP columns (Pharmacia).

The protein sample was concentrated to 0.2 mM and dia-

lyzed against 25 mM sodium phosphate buffer (pH 6.8)

and 100 mM NaCl. The protein was found to be unstable

and precipitates at concentration above 0.3 mM or ionic

strength below 100 mM NaCl. Even at 0.2 mM concen-

tration and high ionic strength condition human eRF1 still

precipitated with a half time of *24 h at 305 K. Notice-

able enhancement in stability was found when L-Arg and L-

Glu was added to the NMR sample solution to a final

concentration of 50 mM each that allowed us to record

several heteronuclear multidimensional NMR spectra for

backbone resonance assignments (Golovanov et al. 2004).

The NMR samples were prepared in 95 % H2O/5 %

D2O, 100 mM NaCl and 25 mM sodium phosphate buffer

(pH 6.8), with or without 50 mM Arg ? Glu mixure.

Dithiothreitol in concentration of 2 mM was added to the

final solution in order to prevent oxidation of the four free

cysteine residues (C97, C127, C302 and C335). Spectra

were acquired at 305 K on a Bruker AVANCE 850 MHz

spectrometer equipped with a triple resonance z-gradient
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cryoprobe. Acquiring spectra at lower temperatures with an

aim of increasing protein stability resulted in substantial

broadening of the resonances and deteriorated the spectral

quality. 1H, 13C and 15N resonance assignments were

determined using the following set of triple-resonance

experiments: 2D 15N–1H TROSY (Pervushin et al. 1998)

Fig. 1 The 1H,15N-TROSY spectrum of the human eRF1 recorded at 850 MHz (a) and expanded view of the most crowded central region (b).

Drawn are representative resonance assignments including residues existing in two conformational states

Backbone 1H, 13C and 15N resonance assignments
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and 3D 15N–1H TROSY-HNCO, TROSY-HN(CA)CO,

TROSY-HNCA, TROSY-HNCACB and TROSY-

HN(CO)CACB (Salzmann et al. 1999). Spectra were pro-

cessed by NMR Pipe (Delaglio et al. 1995), and analyzed

using SPARKY (from Goddard and Kneller).

Assignments and data deposition

Backbone resonance assignments were based on 3D het-

eronuclear NMR experiments carried out on 2D,13C,15N-

labelled human eRF1. Figure 1 presents a TROSY spec-

trum of the human eRF1 recorded at 305 K and illustrates

state of the protein. There are many signals with high

intensity due to increased mobility of corresponding resi-

dues. These are primarily from unstructured C-terminal tail

(residues 414–437) and minidomain 329–372. In contrast,

many backbone amide signals have reduced intensity and

increased line width, corresponding to residues involved in

conformational exchange at ms time scale. There are also

signals (mainly from the M-domain of eRF1) which could

not be found in 2D and 3D NMR spectra due to unfavor-

able exchange (either conformational or amide proton

exchange with water). Attempts to decrease temperature

result in substantial line broadening for many signals. This

confirms an assumption about complex conformational

behavior of the protein. Unfortunately, human eRF1

appeared to be rather unstable at higher temperature;

therefore 305 K was chosen as a compromised tempera-

ture. At this temperature it was possible to carry out NMR

experiments during *24 h time span using a single sam-

ple. Stability of the protein is enhanced in Arg?Glu media

(Golovanov et al. 2004), however this doesn’t have impact

on the signal line widths.

Previously, nearly complete NMR assignments have

been obtained for the N-terminal domain [BMRB-18092

(Polshakov et al. 2012)], the middle (M) domain [BMRB-

6763 (Ivanova et al. 2006)] and the C-terminal domain

[BMRB-15366 (Mantsyzov et al. 2007)]. For many resi-

dues of the full length human eRF1 signal assignments

were obtained by comparing the chemical shifts for 15N,
1HN, 13C’, 13Ca and 13Cb nuclei with corresponding values

for the individual domains. Figure 2 shows an example of

such correlations observed in 3D TROSY-HNCO spec-

trum. HNCO spectrum appeared to be the most informative

due to its highest signal-to noise ratio. However, in many

cases it was necessary to use complementary information

from TROSY-HN(CA)CO, TROSY-HNCA, TROSY-

HNCACB and TROSY-HN(CO)CACB experiments to

obtain correct signal assignments.

Fig. 2 Comparison of strips

from the 3D TROSY-HNCO

spectrum of the full length

human eRF1 (a) and

corresponding strips from 3D

HNCO spectra of individual

eRF1 domains: N-domain (b),

middle domain (c) and

C-terminal domain (d)
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Chemical shift assignments were made for resonances

from 370 of 437 residues (85 %) of the human eRF1. 89,

67 and 92 % of the residues from the N, M and C-domains

correspondingly were identified in the NMR spectra of the

full-size human eRF1. Complete set of the 1H, 13C and 15N

backbone resonances were assigned in 163 (37 %) protein

residues. We were unable to assign resonances in NMR

spectra for 67 of 437 residues. Most of the missing residues

are from the M-domain of eRF1 (Fig. 3). In total, chemical

shifts assignments were made for 71 % of 1HN and non-

prolyl 15N resonances, 25 % of 13Ca, 31 % of 13Cb and

65 % of 13C0 resonances.

Figure 3 illustrates completeness of the signal assign-

ments and the chemical shift differences between the full

size human eRF1 and its individual domains. Such residues

with large chemical shift differences reveal the functionally

important parts of the protein. Thus, residues 58–68 belong

to the universally conserved NIKS motif, responsible for

the recognition of the first stop codon nucleotide

(Kryuchkova et al. 2013). Changes of the chemical shifts

reflect structural plasticity of this fragment. Residues

A135, A138, S144, L275 and K279 are situated on the

border of the domains. Residues V12, I14, W15 of the

N-domain and L389, I391 of the C-domain are likely to

form an interface between two domains. Detailed analysis

of the observed differences and their relationship with the

structure and dynamics of human eRF1 will be published

elsewhere.

The backbone 1H, 15N and 13C chemical shifts have

been deposited in the BioMagResbank database (http://

www.bmrb.wisc.edu) under the accession number BMRB-

19506.
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