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Abstract

The probabilities and cross sections for the 1s*'S — 2s’!S and
1s?!S — 2s2p'P transitions induced in collisions of fast charged projectiles
with helium atoms have been investigated in the framework of the
operator approach to the few-body problem (V. A. Sidorovich, Physica
Scripta, accepted for publication). Calculations have been performed
for the case of the 2s?!'S excitation of helium by projectiles with Z,
varying from 3 to 9 at collision energy E, = 1.5 MeV/u. The calculated
cross sections are in satisfactory agreement with the available
experimental data. The cross section dependence upon the projectile
charge is established. The wavefunctions for few-electron atom, satisfying
the boundary condition U =0 (U is the interconfiguration interaction
potential) in the past or in the future, and the closure relation for joint
system functions are presented.

1. Introduction

Here we study the 1s?!S — 2s?!S and 1s*'S — 2s2p'P
transitions induced in fast collisions of multicharged ions
with helium atoms on the basis of the operator method
of solution of the non-relativistic Schrodinger equation
for few-body systems with a pair-wise interaction, worked
out in Ref. [I]. The study of double-electron transitions
in collisions of structureless charged particles with helium
atoms is especially urgent as in such collisions an insight
into the physical nature of multi-electron processes is
accessible. The present paper continues the theoretical
investigations of multi- electron processes in atomic particle
collisions (see, e.g., [2-6]).

2. Closure relation for joint system functions and structure
of the multi-electron transition amplitude

The scattering problem is solved in the impact parameter
treatment. During collision the charged particle moves along
a straight line R(¢) = b + vz (where b is the impact parameter
and v is the ion velocity relative to the nucleus of the target
atom), and the electron wavefunction ¥ of the target atom
is determined by the non-relativistic Schrédinger equation,
which in the interaction picture has the form

L L . :
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ot
M

V(1) is the operator of the fast ion-target atom interaction in
the interaction picture and r denotes a set of all electron
coordinates of the atomic system relative to the atomic
nucleus. The wavefunction Yy,(r) is an eigenfunction of

*E-mail: vas@annal9.npi.msu.su

Physica Scripta T80

the atomic Hamiltonian F, with an eigenvalue Eg,

H,\W ) (1) = Epy V) (1), @

In the framework of the operator approach to the many body
problem [1] the solution of the Schrodinger equation for
few-electron atomic system has been expressed in terms of
the wavefunctions, determined in the framework of the
isolated configuration approximation (ICA). The relationship
between the Cl-wavefunction ¥, of the atomic system
and the wavefunction ¢, of its ICA-analogue (which we shall
call the basic ICA-state) is established by means of some con-
figuration mixing operator M4,

Vi =l ) >= Myd, = M 17> (3)

Different signs with the M 4)-operator correspond to differ-
ent ways of moving the pole off the real axis. Each of the
ICA-wavefunctions ¢, is represented by an antisymmetrical
product of the single-electron wavefunctions [1]. The
Schrédinger equation (2) has two sets of eigenfunctions of
operator H, [1]: {| {7}? >} and {| {y}”) >}. As will be shown
in further publications, | {7} > (| {y}”) >) represents the
electron wavefunction of an atom (the positron wavefunction
of an antiatom) when the boundary condition U = 0 is sat-
isfied in the past (here U is the interconfiguration interaction
potential). When the boundary condition U = 0 is satisfied
in the future the opposite is true.

Each of the sets of orthonormal eigenfunctions {| {T}(i) >}
of H, is closed

Y < 1=K @)
()

where E is the unit operator. The use of the last relation
gives rise to matrix elements of the form
< {yK}(i) | (=Z,/IR(@) —1; ) | @(i) > in higher order
terms of the scattering amplitude (here r; is the jth atomic
electron radial vector; Z,, is the ion charge) . In such matrix
elements the ways of moving the pole off the real axis are dif-
ferent for the states before and after scattering. If instead
we use the relation

S T e B < = E )
LB

we come to matrix elements < {yK}H | (—=Z,/ |R(H) =1, |)
[ {y L}(H > in which the ways of moving the pole off the real
axis are the same for the states before and after scattering.

© Physica Scripta 1999



Use of the Operator Approach in the Collisions of Highly-Charged lons with Few-Electron Atoms

As a solution of equation (2) we use the normalized
Cl-wavefunction of the form

T +i
107} >= 1 0@ >=2 1y >

(Z+/dv>|v>%]. (6)

Here N is the normalizing factor and E(V is the v-state energy
of atomic system determined in ICA. It represents the first
order term in the power series expansion of the exact CI-

1
N
+

wavefunction |{~7}(i) > in terms of U [1]. Up to a phase
multiplier this function coincides with that from Ref. [4],
determined in the diagonalization approximation. It can be
shown that the functions | {y"} > and | {0} > (with
y # PB) are orthogonal to each other, at least accurate up to
the first order in the potential U. So the relation (5) may
be rewritten in the form of approximate equality

Zi

'

| 001 >< ()7 I~ E, )

which we shall call the closure property for joint system
functions. Then the scattering amplitude 4 has the form

+00
A({F} < {I};b) = / drexpli(Er) — Ein)i

—1
Ny N{F}
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So the collision of a projectile with an atom proceeds as
follows: as a result of the first scattering the atom goes from

)
its initial state | {y, } > satisfying the boundary condltlon

=0 in the past, to the intermediate state | {y( )} >
satlsfylng the boundary condition U =0 in the future.
Between tw two sequentlal scatterings the atom goes from the

state | {y % }

the future, to the state | {yﬁ?} v >, satisfying the boundary
condition U = 0 in the past, and so on. After the whole col-
lision process the atom is registered by the apparatus in
the state, satisfying the boundary condition U =0 in the
future.

>

>, satisfying the boundary condition U = 0 in

3. Results and discussion

Examining the two-electron transitions in helium we can
restrict ourselves for the terms of the perturbation series
up to the second order in the potential V(¢) and the approxi-
mation (6) for the Cl-wavefunctions. The wavefunctions for
15218, 2s2'S and 2s2p 'P states of helium are determined with
allowance for orbitals 1s2, 1s2s, 1s2p, 1sk, 2s2, 2s2p, 2p°, 25k,
2pk only. The normalizing factor Nk, for the intermediate
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Fig. 1. The helium 1s>'S — 2s?!'S excitation cross section at collision energy
E =1.5MeV/u as a function of the projectile charge. Full curve presents
the results using relation (7); dotted curve, the results using relation (4)
and Cl-wavefunctions (6); dash-dotted curve, the results using the
IPM-wavefunctions in the intermediate states; dashed curve, the results using
the independent electron approximation for the second term of amplitude (8).
The experimental results are from Ref. [7].

state wavefunction | { }(i) > is equal to 1.04 because we
take into account only the orbitals 1s?, 1s2s, 2s%, 2p°.

The cross sections of the 1s*'S — 2s?'S excitation of
helium induced in collisions of charged projectiles with
helium at collision energy £ = 1.5 MeV/u are presented in
Fig. 1 versus the projectile charge Z, ranging from 3 to 9.
The results which use relation (7) are in a better agreement
with the experimental data than others.

4. Empirical analysis

The calculated cross sections, with a higher degree of
accuracy, may be approached by the function

o= GOZ;anp+b~ (9)

The parameters o, @, b depend on the scattering energy E.
For the present case we have: ¢y = 1.385 x 10~2cm?
a =1.057 and b = —0.645. The present cross sections are
in good agreement with the measured ones [7], but the
Z-dependence of the cross section (relation (9)) differs from
that presented in Ref. [7] (in Ref. [7]: 0 = 4 Zlf and B = 3).
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