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Abstract

This report reviews the recent theoretical results on the fast ion-few-electron atom collisions obtained in the

framework of an approach using the perturbation theory expansion in the scattering potential and the diagonalization

approximation for CI-wavefunction of the target atom. The uniform consideration of the electron transitions to states

of discrete and continuous spectra is set forth. The results of investigations of the two-electron transitions in helium

induced by fast charged projectiles, such as, the total and di�erential cross sections, mechanisms of electron transitions,

interference problem and charge asymmetry of the cross sections, normalization of CI-wavefunctions of the discrete and

continuous spectrum states, obtained on the basis of the present approach, are discussed. Ó 1999 Elsevier Science B.V.

All rights reserved.
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1. Introduction

The collisions of charged particles with few-
electron atoms have attracted much interest of
both experimentalists and theorists in the last
years. The increase of activity in the theoretical
investigations of multi-electron processes like
double excitation, double ionization, ionization±
excitation, transfer excitation and double capture
was due to the pioneer measurements of the

double-ionization cross sections of helium by
protons and antiprotons performed by Andersen
and co-workers [1,2]. Their measurements showed
a two-fold exceeding of the cross sections for
antiprotons over the proton ones at ion energies
from 2 to 5 MeV/u and stimulated an active study
of the problem of correlations in atomic colli-
sions.

The single-electron transitions, such as ioniza-
tion or excitation, are relatively well understood,
especially at high collision energies where the de-
scription of the single-electron processes on the
basis of the ®rst Born approximation is really
simple. However, the use of the ®rst Born ap-
proximation is not always correct, even for high
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enough collision energies. The ®rst Born approxi-
mation implies that the cross sections do not
depend on the sign of the projectile charge. At the
same time, the more complete calculations of the
single-electron excitation cross sections of helium
by protons and antiprotons, performed by Bal-
ashov and co-workers [3] in the framework of the
multichannel di�raction approximation, showed a
strong charge asymmetry for the optically-forbid-
den transitions in the collision energy interval
from 0.05 to 1.0 MeV/u, owing to the signi®cant
contribution of two-step processes in such transi-
tions.

The two-electron processes in fast ion-atom
collisions were investigated theoretically by many
authors (see, e.g., Refs. [4±31]). In contrast to
the single-electron processes, the situation in the
case of the multi-electron ones is not so clear.
The double-excitation cross sections of helium
calculated by di�erent authors [4±10] do not
conform with each other and are in a rather bad
agreement with the available experimental data
[32]. The analysis of such a situation has been
done in Refs. [11,12]. Calculations using the
di�erent modi®cations of the close-coupling
method have been performed in the works [4±
6,9,10]. The main shortcoming of almost all
close-coupling calculations of the double-excita-
tion processes is the lack of the continuum states
in the expansion of the electron wavefunction of
the target atom. Later Martin and Salin [33]
suggested to include the continuum states with
help of a discretization procedure [34,35]. How-
ever, at such an approach one cannot be sure in
advance that the included continuum states are
exactly those which give the dominant contribu-
tion to the scattering process. Recently new
measurements and theoretical estimations of ex-
citation cross sections of the helium 2s21S,
2s2p1P and 2p21D autoionizing states produced
in collisions of 100 keV protons with helium
have been performed in the work [36].

Elaborate theoretical investigations of the
double ionization of helium by protons and
antiprotons have been done by Reading and
Ford using the forced impulse method [13,14]. In
this method the system is in a de®nite correlated
state at the beginning of the collision. The whole

collision process is divided into a set of short
enough time intervals. During the short time
step the system evolves without correlations. At
the end of every time interval the system is al-
lowed to collapse back into a linear superposi-
tion of all possible correlated states. The new set
of states is then used as a basis set to de®ne a
correlated wavefunction at the new time step,
and so on. Reading and Ford have obtained a
pronounced di�erence in the double-ionization
cross sections for positively and negatively
charged particles. In a more later work [17] they
have presented double-ionization cross sections
of helium by fast charged projectiles which are
in a very good agreement with the experimental
data [37±40].

Another theoretical model used for the con-
sideration of the inelastic transitions in ion-atom
collisions is that developed by Presnyakov and
Uskov [26]. This is a natural generalization of the
Keldysh method treating the ionization of an atom
in the electromagnetic ®eld [41] to the case of ion-
atom collisions. The idea of this method consists in
replacement of the time-dependent Schr�odinger
equation of the collision problem with the non-
stationary equation for the electron moving in the
Coulomb ®eld of the target core and in the dipole
®eld of the projectile. The latter equation can be
solved exactly which warrants the necessity of such
a replacement. Since this method is not a pertur-
bative one, it can be very useful when examining
collisions with taking part of multicharged ions
[27±29].

The methods based on the perturbation ex-
pansions in the scattering potential and the cor-
relation interaction potential are often used for
the investigation of multi-electron processes [7±
9,18,21,23,24,30,31]. The study of the mechanisms
of two-electron transitions in fast collisions of
charged projectiles with helium atoms has been
carried out exactly in the framework of the per-
turbation theory in Refs. [1,2,7,8,11,12,24,31].

In the present report the recent results on fast
ion-helium atom collisions obtained in the frame-
work of the perturbation expansion in the scat-
tering potential and the diagonalization
approximation for the electron wavefunction of
the target atom are reviewed.

132 V.A. Sidorovich / Nucl. Instr. and Meth. in Phys. Res. B 154 (1999) 131±141



2. The basic points of the theoretical approach

2.1. Description of the scattering process

The scattering of a fast charged projectile on a
few-electron atom is considered in the impact pa-
rameter method. During the collision the projectile
moves along a straight line R�t� � b� vt (where b
is the impact parameter and v is the ion velocity
relative to the nucleus of the target atom), and the
electron wavefunction W of the target atom is de-
termined by the non-relativistic Schr�odinger
equation, which in the interaction picture has the
form

i
o
ot

Wint�t� � ~V �t�Wint�t�
with Wint�t� jt!�1 � WI;F�r�; �1�

where

~V �t� � exp�iĤ0t� ÿ
Xn

j�1

Zp

j R�t� ÿ rj j

 !
exp�ÿiĤ0t�

�2�
is the operator of the interaction of the fast ion
with the target atom in the interaction picture;
Ĥ0 � Ĥa � K̂ is the free-motion Hamiltonian; Ĥa is
the atomic system Hamiltonian and K̂ � P̂2=2M is
the kinetic-energy operator; P̂ is the relative-mo-
tion momentum operator and M is the reduced
mass of the colliding particles; r denotes a set of all
electron coordinates of the atomic system, deter-
mined relative to the atomic nucleus; rj is the ra-
dial vector of the jth atomic electron; Zp is the ion
charge.

The amplitude of the transition from the state I
to the state F as a function of the impact param-
eter b is given by the expression

A�F I; b� � hWF j S��1;ÿ1� j WIi; �3�
where WI and WF are the orthonormalized wave-
functions for the initial and ®nal states, respec-
tively; the scattering S-matrix is of the form

S��1;ÿ1� � T exp ÿ i

Z �1

ÿ1
dt ~V �t�

0@ 1A: �4�

2.2. Electron wavefunction of a multi-electron atom

The wavefunction WI;F�r� is an eigenfunction of
the atomic Hamiltonian Ĥa with an eigenvalue
EI;F

ĤaWI;F�r� � EI;FWI;F�r�: �5�
The non-relativistic atomic Hamiltonian for the
few-electron atomic system has the form

Ĥa �
Xn

j�1

p̂2
j

2m
ÿ Zt

rj

0@ 1A� Vee; �6�

where Vee is the electron±electron interaction po-
tential; p̂j is the momentum operator of the jth
atomic electron; rj �j rj j; m is the electron mass;
Zt is the target atom nuclear charge. As a solution
of Eq. (5) we can take the normalized CI-wave-
functions determined in the form

j f~c�I�g���i � 1

N
j fc�I�g���i

� �i

N
j ci �

X
m

0 j mi hm j U j ci
Ec ÿ Em � i�

 !
: �7�

Here N is the normalizing factor; j li is the IPM
wavefunction of the considered atomic system
and represents by itself an antisymmetrical pro-
duct of the single-electron wavefunctions; El �
E0

l � hl j U j li; E0
l is the energy of the l-state of

the atomic system determined without including
the electron-electron interaction; U is the correla-
tion potential [42]; the imaginary portion �i� in
the energy denominator has the e�ect of moving
the pole o� the real axis. The sign

P0
m denotes the

summation over all discrete states (except the state
that can lead to self-mixing) and integration over
all continuous states. The wavefunction Eq. (7) is
the ®rst order term of power series expansion of
the exact CI-wavefunction j f~cg���i in terms of
correlation potential U [42] and up to a phase
multiplier this wavefunction coincides with that
[11,12], determined in the diagonalization ap-
proximation. It may be shown that any two
functions from the set fj f~c�I�j g���ig corresponding
to di�erent values of energy E and E0, respectively,
are orthogonal accurate up to the ®rst order in the
potential U.
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In accordance with the de®nitions introduced in
Ref. [43], the ®rst term (j ci) in the right-hand side
of Eq. (7) we shall call the basic state. All states
entering in the last term in the right-hand side of
Eq. (7) we shall call the included states. As

1

Ec ÿ Em � i�
� ipd�Ec ÿ Em� � P

Ec ÿ Em
; �8�

then in the sum over the di�erent electron states in
Eq. (7) there are states which possess the same
energy as the basic state. Such states are called the
resonant included states; the rest of the included
states are the nonresonant included states. The
appropriate reaction channel corresponds to each
state on the right-hand side of Eq. (7). We shall
call them, respectively: basic channel, resonant
included channels, and nonresonant included
channels. Accordingly, the coupling of the basic
channel with the resonant or nonresonant included
channels is called, respectively, the resonant or
nonresonant channel coupling.

3. The theory of double-electron processes in colli-
sions of charged particles with helium atoms

3.1. Mechanisms of the double-electron transitions

Examining the two-electron transitions in heli-
um we can restrict ourselves by taking into ac-
count the terms of the perturbation theory series
up to the second order in the potential ~V �t� and the
diagonalization approximation for CI-wave-
function. Since the orthogonality of the CI-wave-
functions obtained by the diagonalization
approximation breaks down for the terms of sec-
ond- (or higher-) order in the potential U, there-
fore evaluating the transition amplitude we do not
need to take into account the matrix elements
containing the potential U in power higher than
unity. At such restrictions we can represent the
scattering amplitude of the double-electron tran-
sition as a superposition of the amplitudes for
transitions described in the framework of two kind
of mechanisms [11,12]: (i) correlation mechanism,
c1 (or c2), describes the transitions occurring as a
result of a single (or double) scattering of a pro-
jectile by the helium atom and the correlation in-

teraction of atomic electrons; (ii) mechanism of the
independent electron transitions, I2, describes the
transition of two helium electrons as a result of a
single interaction of each of them with the pro-
jectile. When the correlations are taken into ac-
count in the ®nal state wavefunction only the
correlation mechanism c1 coincides with the well-
known TS-1 mechanism [2]. The amplitude aI2

coincides with the amplitude called the TS-2 one
[2] which, usually, is determined for the IPM
wavefunctions.

So for the helium double excitation scattering
amplitude and for the amplitude of the double-
electron transition to the continuous state of heli-
um (e.g., simultaneous ionization-excitation or
double ionization) we, respectively, have

A�d� j n1l1n2l2
1LMi  j 1s2 1Si; b

ÿ �
�
X
m1;m2

CLM
l1m1l2m2

ac1�c1c2; b�ÿ
� ac2�c1c2; b� � aI2�c1c2; b�� �9�

and

A�c� j c1c2i  j 1s2 1Si; b
ÿ �
� ac1�c1c2; b� � ac2�c1c2; b� � aI2�c1c2; b� �10�

where b �j b j; CLM
l1m1l2m2

are the Clebsch±Gordan
coe�cients. In Eq. (9) c1 and c2 denote` the
quantum numbers of the single-electron discrete
states; in Eq. (10) only one of the quantities c1 and
c2 may denote the quantum numbers of the single-
electron discrete state. The allowance for the terms
up to the second order in the potential ~V �t�, when
calculating the transition amplitudes, gives us a
possibility to investigate the charge asymmetry in
the total cross sections of the examined double-
electron processes. Namely these terms are re-
sponsible for the charge asymmetry, because only
they can contribute to the term proportional to Z3

p

in the scattering cross sections.

3.2. Uniform consideration of electron transitions to
the states of discrete and continuum spectra

For uniform consideration of electron transi-
tions into discrete and continuum states we shall
represent the single-electron wavefunction of the
continuous spectrum state with the Coulomb as-

134 V.A. Sidorovich / Nucl. Instr. and Meth. in Phys. Res. B 154 (1999) 131±141



ymptotic at in®nity over the superposition of the
wavefunctions of continuous spectrum states with
speci®ed energy e and di�erent values of orbital
angular momentum l and its projection on the
quantization axis m [44]

j~ji � 1

j

X
l;m

il exp�idl�Rjl�r�Y �lm�X~j�Ylm�Xr�: �11�

Here Ylm�X� is the spherical harmonic; Xt is the
spherical angle of vector t; dl is the phase shift;~j is
the electron momentum in the continuum;
j �j~j j; Rjl�r� is the Coulomb wavefunction de-
termined in the ®eld of charge Zt.

Now we can represent any of amplitudes ac1, ac2

and aI2 as a superposition of the corresponding
amplitudes ~a for the transitions to the states,
characterized by the speci®c energy and di�erent
possible values of the orbital angular momentum
and its projection on the quantization axis [11,12]
for each atomic electrons

aq�c1c2; b�
�

X
l0
1
;m0

1
;l0

2
;m0

2

U �l0
1
m0

1
�~n1�U �l0

2
m0

2
�~n2�~aq�~n1l01m01~n2l02m02; b�

�12�
where

Ul0m0 �~n� �
dll0 dmm0 ; ~n � n;
1
j il0 exp�ÿidl0 �Y �l0m0 �X~j�; ~n �j~j j :

(
�13�

The introduction of the functions ~aq is very con-
venient because the problem of calculating the
amplitudes ~aq for transitions to the states of con-
tinuous spectrum is not distinguished from that for
transitions to the states of discrete spectrum. In the
case of transitions to the states of discrete spec-
trum the amplitude ~aq coincides with the corre-
sponding amplitude aq.

Any of the amplitudes ~aq may be expressed with
help of two functions D�1�j and D�2� [11,12]: the ®rst
of them, up to a multiplier depending on the
projectile velocity v, is the conventional semiclas-
sical amplitude of single-electron transition, and
the second is the matrix element from the inter-
con®guration interaction potential U. For the
transition between two arbitrary states character-

ized by the values of quantum numbers of every
atomic electrons the functions D�1�j and D�2� have
the form

D�1�j j ~n0jl0jm0j~n0kl0km0k�F�i 
j

~njljmj~nklkmk�I�i j qk; b
� �

�
Z

d2q?
q2

exp�ÿiq?b�
� h~n0jl0jm0j~n0kl0km0k�F� j exp�iqrj� j ~njljmj~nklkmk�I�i

� 2piljÿl0j
X
l00;m00

im00 �2l00 � 1� �2lj � 1��l00ÿ j m00 j�!
�2l0j � 1��l00� j m00 j�!

" #1=2

� C
l0j0

lj0l000 C
l0jm0j
ljmjl00m00

Z
q?dq?

q2
Jjm00 j�q?b�P jm00 j

l00 �cos hq�

�
Z

r2
j drjR�~n0jl0j

�rj� R~njlj�rj� jl00 �qrj� d~n0k ~nk dl0klk dm0kmk ;

�14�
and

D�2� j ~n0jl0jm0j~n0kl0km0k�F�i (j ~njljmj~nklkmk�I�i
� �
� h~n0jl0jm0j~n0kl0km0k�F� j U j ~njljmj~nklkmk�I�i

� il0j�lkÿl0kÿlj
X
l00;m00
�ÿ1�l00 �2l0j � 1��2lk � 1�

�2lj � 1��2l0k � 1�

" #1=2

� Clj0

l0j0l000 Cljmj

l0jm0jl00m00 C
l0k 0

lk 0l000 C
l0km0k
lkmkl00m00

�
Z

r2
j drj

Z
r2

k drk
rl00
<

rl00�1
>

R�~n0jl0j
�rj�R~njlj�rj�

� R�~n0kl0k
�rk�R~nk lk �rk�: �15�

where Jm�q?b� is a Bessel function of order m;
P m

l �cos h� is an associated Legendre polynomial;
jl�qr� is a spherical Bessel function of order l.

3.3. Interference in collision processes

McGuire [45] was the ®rst who suggested that
the di�erence in cross sections of the double ion-
ization of helium by protons and electrons is due
to the interference between the ®rst-order (shake-
o�) and the second order (TS-2) processes which
gives rise to a Z3

p term in the cross section. The
problem of interference in the process of the
double ionization from the ground state of helium
at some simplifying assumptions has been rigor-
ously solved in the work [46]. It was shown that
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the on-energy shell transitions, described by the
amplitude ac1, must interfere with the transitions
described by the amplitude aI2, determined in the
independent particle model. The qualitative rea-
soning about the di�erence between the helium
double ionization cross sections for protons and
antiprotons, adduced in the work [2], is in agree-
ment with the result of Ref. [46].

As one can see easily from Eqs. (14) and (15),
each single scattering act of the projectile with the
jth helium electron brings about an imaginary unit
to the sth power, where s � l0j � l0k ÿ lj ÿ lk � mj�
mk ÿ m0j ÿ m0k. Here the quantum numbers with
and without primes are, respectively, related to the
electrons in states before and after the scattering.
The value of s for two sequential scatterings is
determined by the same expression, only the
quantum numbers marked by primes are related to
the state before the ®rst scattering and the corre-
sponding numbers without primes, to the state
after the second scattering. The rth-order term of
the perturbation theory series in the scattering
amplitude contains the additional imaginary unit
in the rth power; every o�-energy shell transition
occurring under the in¯uence of the projectile-at-
om interaction reduces the power of the imaginary
unit by one; each on-energy shell transition oc-
curring under the in¯uence of the electron corre-
lation potential gives rise to the addition of the
imaginary unit to the amplitude.

Now we introduce the following de®nition
[11,12]. The index of a power of the imaginary unit
in some function will be called the index of ima-
ginarity of that function. The indexes of imagi-
narity of partial amplitudes have an important
property: they allow to ®nd the phase di�erences
between di�erent amplitudes ~aq and therefore to
determine the possibility of the interference of the
various transitions with each other. For the total
index of imaginarity n of any partial scattering
amplitude ~aq we may write

n � s� r ÿ n�off�
sc � n�on�

prior � n�on�
post ; �16�

where r is the perturbation theory series order of
the partial scattering amplitude; n�off�

sc is the total
number of the single o�-energy shell transitions
occurring under the in¯uence of the projectile±at-
om interaction; n�on�

prior (n�on�
post) is the summed number

of the on-energy shell transitions, taking place
before (after) the direct collision of the projectile
with the atomic electrons, occurring under the in-
¯uence of the electron correlation potential in all r
single scatterings. Only the transition for which the
index of imaginarity n is either even or odd can
interfere with each other.

We use the formula (16) in the particular case
of the double-electron transitions from the ground
state of helium. For di�erent partial scattering

amplitudes we have: amplitudes ~ac1
on (r �

1; n�off�
sc � 0; n�on�

prior � n�on�
post � 1) and ~aI2

on(r � 2;

n�off�
sc � n�on�

prior � n�on�
post � 0) contain the multiplier

im1�m2ÿl1ÿl2�2; amplitudes ~ac1
off (r � 1; n�off�

sc � n�on�
prior �

n�on�
post � 0) and ~aI2

off (r � 2; n�off�
sc � 1; n�on�

prior � n�on�
post

� 0), the multiplier im1�m2ÿl1ÿl2�1 and im1�m2ÿl1ÿl2�3,
respectively. Here ~ac1

on�~aI2
on� and ~ac1

off�~aI2
off� are the

parts of the amplitudes ~ac1�~aI2� describing the on-
energy shell and o�-energy shell transitions, re-
spectively. So we see that the transitions, described
by the amplitudes ~ac1

on and ~aI2
on, must interfere with

each other [2,11,12,46] as well as the transitions,
described by the amplitudes ~ac1

off and ~aI2
off , do.

4. Application of the formalism to the speci®c

problems

Below the results of the investigations of the
double-electron excitation and the simultaneous
ionization-excitation of helium in fast collisions of
protons, antiprotons and multicharged ions with
helium atoms, performed in the framework of the
presented formalism, will be shown. When per-
forming the calculations the partial amplitude ac2

was omitted as it is much less than the other terms
of the amplitudes Eqs. (9) and (10) and in the
partial amplitude aI2 only the on-energy shell
transitions were taken into account.

4.1. Normalization of CI-wavefunctions

The wavefunctions for 1s2 1S, 2s2 1S and 2s2p 1P
states of helium were determined with allowance
for orbitals 1s2; 1s2s; 1s2p; 1s~j; 2s2; 2s2p; 2p2; 2s~j,
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2p~j only. The calculations gave the values 1.08,
1.312 and 1.561 for the normalizing factors for the
CI-wavefunctions of 1s2 1S, 2s2 1S and 2s2p 1P
states, respectively. For the normalizing factor of
the j f2s~j0g���i wavefunction, retaining only the
on-energy shell transitions, we obtain the follow-
ing relation [31,47]

hf2s~jg��� j f2s~j0g���i � N 2
2s~j�j0�d�~jÿ~j0�; �17�

i.e. the continuous spectrum state CI-wavefunction
of helium has to be normalized to the d-function of
the momentum. The normalizing factor N2s~j�j�,
determined with allowance for only the ns~j reso-
nant included states in the expansion of j f2s~jg���i
over the atomic orbitals, is presented in Fig. 1.
Contributions from states with n > 4 were deter-
mined as 1=n3. Jumps on the curve for N�j� are
observed at values of the ejected electron mo-
mentum ~j conforming to the relation
j2=2 � Enl 2L ÿ E2s 2S (here Enl 2L is the energy of the
nl 2L state of the He� ion; n; l and L are the
principal and orbital quantum numbers and
the orbital angular momentum for the states of the
He� ion lying above the 2s 2S one), namely, at
ejected electron energies corresponding to the
threshold ones. At these energies the opening of
new ways of transferring the electrons from the
basic state to the other ones occurs.

4.2. The helium double-electron excitation

The cross sections of the double-electron exci-
tation to the 2s2 1S autoionizing state in collisions
of helium with protons and antiprotons are pre-
sented in Fig. 2a. The ®gure shows that the cross
sections for antiprotons signi®cantly exceed those
for protons at scattering energies from 0.15 to �2
MeV. The available experimental data and calcu-

Fig. 1. The normalizing factor N�j� for the wave function of

the 2s~j helium state vs the electron momentum j (Ref. [31]).

Fig. 2. The cross sections for the double-electron

p� �He�1s2 1S� ! p� �He�2s2 1S� (a) and p� �He�1s2 1S� !
p� � eÿ �He��2s 2S� (b) transitions vs the projectile energy Ep.

Calculated results: 1 ± present approach Ref. [24] (a) and Ref.

[31] (b); SMC ± second Born results Ref. [8]; FL (Ref. [4]) and

W (Ref. [6]) ± close-coupling results for proton impact; R ± ®rst

Born results for electron impact Ref. [18]; RBR ± R-matrix

results for electron impact Ref. [19]. Full curves stand for

protons; broken curves, for antiprotons. Experimental data

Ref. [32].
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lated cross sections received in other theoretical
approaches are presented there. Contributions
from the di�erent excitation mechanisms to the
helium double-electron 1s2 1S! 2s2 1S transition
for protons are presented in Fig. 3. Almost for all
considered collision energies the contribution
to the double-electron excitation cross section
from the correlation mechanism of excitation ex-
ceeds the contribution made from the independent
electron transitions. Contribution from the inter-
ference term in the cross section is compared with
those from the two mentioned excitation mecha-
nisms. The di�erence between cross sections for
protons and antiprotons must be signi®cant as the
interference terms for protons and antiprotons
have opposite signs.

The helium 1s2 1S! 2s2 1S excitation cross
sections for particles with charges Zp from 3 to 9 at
projectile energy E � 1:5 MeV/u are presented in

Fig. 4. The results of the calculations carried out
without taking into account the states of contin-
uous spectrum in the amplitude ac1 are also pre-
sented there. A signi®cant di�erence between the
results performed with and without taking into
account the continuum states (see Fig. 4) points
out the important role of the transitions through
the continuum states in the double excitation of
helium. The qualitative reasoning showed that in
the case, when absolute values of terms of the 1st-
and 2nd-orders in the scattering amplitude are
approximately equal to each other, the cross sec-
tion may be described within the accuracy of
�50% by the terms up to the second order in the
scattering potential. In the case of the

Fig. 3. Contributions from di�erent transition mechanisms to

the helium total 1s2 1S! 2s~j (Ref. [31]) and 1s2 1S! 2s2 1S

(Ref. [24]) cross sections for proton impact vs. the projectile

energy Ep. Full curve stands for the contribution from the

correlation mechanism; broken curve, for the contribution from

the independent transitions mechanism; dotted curve, for the

modulus of the interference term of the cross section.

Fig. 4. The helium 1s2 1S! 2s2 1S excitation cross section at

scattering energy E � 1:5 MeV/u as a function of the projectile

charge Zp. Full curve denotes the results received in the present

approach Ref. [24]; dashed curve, the results obtained without

taking into account of the continuous spectrum states in the

amplitude ac1; triangles and squares present the close-coupling

results of Refs. [9,10] and Ref. [4], respectively; circles experi-

mental data Ref. [32].

138 V.A. Sidorovich / Nucl. Instr. and Meth. in Phys. Res. B 154 (1999) 131±141



1s2 1S! 2s2 1S excitation of helium by charged
particles with energy E � 1:5 MeV/u that condi-
tion is ful®lled at Zp � 5±7 for the impact param-
eters bringing in the main contribution to the
excitation process. The accuracy must be better
when Zp < 5, and it must be worse when Zp > 7.
The calculated cross sections (full curve) agree
with the available experimental data [32] within
the measurement errors.

4.3. The simultaneous ionization±excitation of heli-
um

Fig. 2b shows that for the 1s2 1S! 2s~j helium
ionization±excitation process the calculations pre-
dict the exceeding of the total cross sections for
protons over the antiproton ones at all collision
energies considered. This is a very interesting sit-
uation because for all previously investigated two-
electron transitions in helium the antiproton cross
sections were greater than those for protons.
Contributions from di�erent mechanisms to the
2s~j ionization-excitation cross section are pre-
sented in Fig. 3.

The calculated results of the single di�erential
cross section (SDCS) for the 2s~j simultaneous
ionization-excitation, induced in collisions of pro-
tons and antiprotons with helium atoms, are pre-
sented in Fig. 5 for the projectile energy Ep � 1:5
MeV versus the ejected electron energy Ee. The
calculation results show that at ejected electron
energies Ee � Enl 2L ÿ E2s 2S there are sharp drops in
SDCS. All these drops in the energy spectrum of
electrons, ejected at the 1s2 1S! 2s~j transition, are
located in the range of electron energies
0 < Ee6 ÿ E2s 2S. Drops in the electron energy
spectrum conform to jumps on the curve for
N2s~j�j� (Fig. 1). The appearance of the drops is due
to the opening of new resonant channels. Sharp
drops in the energy spectrum of the ejected elec-
trons is the e�ect of the resonant channel coupling.

To elucidate the charge asymmetry in the heli-
um 2s~j ionization-excitation cross sections at
greater length we shall consider here the ioniza-
tion-excitation probabilities for protons and anti-
protons which are presented in Fig. 6 at projectile
energy Ep � 1:5 MeV. The ejection of high energy
electrons is due to the collisions at small impact

parameters b, where the screening of the helium
nucleus charge by antiprotons promotes SDCS for
antiprotons and the antiscreening of the helium
nucleus charge by protons reduces SDCS for
protons. The ejection of small energy electrons is

Fig. 5. The value of dr=dEe as a function of Ee, the ejected

electron energy, for the 1s2 1S! 2s~j transition induced in col-

lisions of protons and antiprotons with helium at projectile

energy Ep � 1:5 MeV (Ref. [31]). Full curve stands for SDCS

for protons; dotted curve, for SDCS for antiprotons.

Fig. 6. The ionization±excitation probability P�b� as a function

of the impact parameter b for the 1s2 1S! 2s~j transition in-

duced in collisions of protons and antiprotons with helium at

projectile energy Ep � 1:5 MeV (Ref. [31]). Full curve stands for

the probability for protons; dotted curve, for the probability for

antiprotons.
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due to the collisions at large impact parameters b,
where we have now the exceeding of the proton
SDCS over the antiproton ones.

5. Outstanding questions

The top priority problem in physics of colli-
sions of atomic particles is the working out a new
concept of electron correlations in few-electron
atoms having a clear physical meaning and strict
mathematical justi®cation. The present concept of
electron correlations as some equivalent to Vee

which can be de®ned as the di�erence between the
exact and Hartree±Fock calculations [25,48] is, to
my mind, unsatisfactory. The strict physical de®-
nition should not rely on the calculated results.

The solution of this problem enables us to ob-
tain the correct wavefunction of few-electron atom
that, in its turn, will allow to achieve a pronounced
progress in future investigations of collisions of
charged particles with few-electron atoms.

6. Conclusion

In the present report I have reviewed results,
mainly, of some of my recent own investigations of
the double-electron transitions induced in colli-
sions of protons, antiprotons and multicharged
ions with helium atoms performed on the basis of
the approach using the perturbation expansions in
terms of the scattering potential and the diago-
nalization approximation for the target atom
wavefunction. An important quality of the pre-
sented approach is its universality: to determine the
amplitude of any inelastic transition we need to
evaluate only two functions D�1�j and D�2� for di�er-
ent elementary scattering events.
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