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Conical emission from DC-biased filament at 10 THz
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Femtosecond filament in the external electrostatic field (DC-biased filament) is a prominent source of
terahertz (THz) radiation [1]. As the external field grows above ~3 kV/cm [2], the directional diagram of
the THz emission from a DC-biased filament in air is unimodal with the maximum on the laser beam axis.
This was confirmed by numerous experiments and numerous registration techniques, either narrowband
detection [2], wideband detection [3, 4], or spectrally resolved [5, 6]. The excellent directionality of THz
emission from DC-biased filament makes this THz source a promising tool for the measurements of low
(10"°~10" cm™) densities of free electrons [7]. The measurements of THz directional diagrams [2-6] were
done in the low-frequency range below 2-3 THz. However, 3D + time simulations of THz generation in
DC-biased filament performed in our recent work [6] predicted the appearance of THz conical emission
in high-frequency THz range (for our 90-fs pulse at ~10 THz). In this work, we confirm this prediction
experimentally.

In our experiment, we focused the 740-nm, 90-fs, 1.8-mJ pulse into the air gap between the
electrodes biased by 15-kV/cm static electric field. The plasma filament between the electrodes was a
source of THz radiation detected by a superconducting MoRe bolometer Scontel RS-CCR-1-12T-1+0.3-
3T-0.1 sensitive in the spectral range of 0.3-10 THz. The bolometer with the bandpass filters (centered at
the frequencies v = 0.5, 1, 3 and 10 THz) was fixed on the 40-cm-long horizontal board and rotated at the
horizontal angle o around the vertical axis. The spherical mirror was fixed on the vertical 40-cm post. To
vary the vertical angle B, we moved the focusing mirror along the post. So, the variation of the angles o
and [} allowed us to reconstruct the 2D distributions of the THz fluence F(a, B) at the frequency v
determined by the bandpass filter. We traced experimentally the transit from the on-axis unimodal angular
distribution at 0.5—1 THz to the conical one at 10 THz, see Fig. 1.
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Fig. 1. 2D distributions of the fluence F(a, B) measured at frequencies (a) v = 0.5 THz, (b) 1 THz, (¢) 3 THz, (d) 10 THz.
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