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Abstract. We prove maximum principle for a parabolic equation and obtain necessary conditions for an optimal control prob-
lem governed by a one-dimensional general type parabolic equation. We obtain lower estimates to the control function without
assumption of the data positivity.

Introduction. Definitions and Preliminary Results.

We study the problem which is modeled by a one-dimensional parabolic equation. First studies of this problem are
presented in [1]–[3]. The mathematical approach is developed in [4] and [5]. Various extremum problems for final
and distributed observation are considered in [6]—[13]. One can find the review of early results in [10], later results
is contained in [14], [15].

We consider the extremum problem with weighted integral cost functional for the following parabolic mixed
problem

ut = (a(x, t)ux)x + b(x, t)ux + h(x, t)u, (x, t) ∈ QT = (0, 1) × (0, T ), T > 0, (1)
u(0, t) = ϕ(t), ux(1, t) = ψ(t), 0 < t < T, (2)
u(x, 0) = ξ(x), 0 < x < 1, (3)

where the real functions a, b and h are smooth in QT ,

0 < a1 ≤ a(x, t) ≤ a2 < ∞, (4)

ϕ ∈ W1
2 (0,T ), ψ ∈ W1

2 (0,T ), ξ ∈ L2(0, 1). Here W1
2 (0,T ) is the Sobolev space of weakly differentiable functions with

the norm

‖u‖W1
2 (0,T ) =

(∫ T

0
((u′)2 + u2)dt

)1/2
. (5)



We study the control problem with point observation: by controlling the temperature ϕ at the left end of the
segment (the functions ψ and ξ are assumed to be fixed), we try to make at some point x0 ∈ (0, 1) the temperature
u(x0, t) close to the given function z(t) over the entire time interval (0,T ). This problem arises in the model of climate
control in industrial greenhouses [16]–[17]. The proposed paper develops and generalizes the authors’ results of [16]–
[22]. Here we study a more general equation with a variable diffusion coefficient a, a convection coefficient b, and a
potential h called the depletion potential, and obtain estimates for the control function with the help of a maximum
principle without assumption of the data positivity. We give also a necessary condition to minimizer.

Definition 1. ([24], p. 6.) We denote by V1,0
2 (QT ) the Banach space of functions u ∈ W1,0

2 (QT ) with the finite norm

‖u‖V1,0
2 (QT ) = sup

0≤t≤T
‖u(x, t)‖L2(0,1) + ‖ux‖L2(QT ) (6)

such that t �→ u(·, t) is a continuous mapping [0,T ]→ L2(0, 1).

We denote by W̃1
2 (QT ) the set of functions η ∈ W1

2 (QT ) satisfying the conditions η(x,T ) = 0 and η(0, t) = 0.

Definition 2. A weak solution to the problem (1)–(3) is a function u ∈ V1,0
2 (QT ) satisfying the condition u(0, t) = ϕ(t)

and the equality∫
QT

(
a(x, t)uxηx − b(x, t)uxη − h(x, t)uη − uηt

)
dx dt =

∫ 1

0
ξ(x) η(x, 0) dx +

∫ T

0
a(1, t)ψ(t) η(1, t) dt (7)

for all η ∈ W̃1
2 (QT ).

Theorem 1. ([21]) The problem (1)–(3) has a unique weak solution u ∈ V1,0
2 (QT ), which satisfies the inequality

‖u‖V1,0
2 (QT ) ≤ C

(‖ϕ‖W1
2 (0,T ) + ‖ψ‖W1

2 (0,T ) + ‖ξ‖L2(0,1)
)

(8)

with some constant C independent of ϕ, ψ, and ξ.

Theorem 2. Let u be a solution to the problem (1)–(3) with the boundary and initial functions ϕ, ψ, and ξ satisfying
the conditions ess inf

t∈(0,T )
ϕ ≥ 0, ess inf

t∈(0,T )
ψ ≥ 0, and ess inf

x∈(0,1)
ξ ≥ 0. Then the solution u is also non-negative:

ess inf
(x,t)∈QT

u ≥ 0. (9)

Main Results

Continuous Dependence on the Data and Estimates of Solutions

Theorem 3. The solution u ∈ V1,0
2 (QT ) to the problem (1)–(3) continuously depends on the initial and boundary data

(ξ, ϕ, ψ) ∈ L2(0, 1) ×W1
2 (0,T ) ×W1

2 (0,T ).

Using Theorem 2, we obtain the following estimate. In comparison with our previous results, we obtain this
result without assumption of the data positivity.

Theorem 4. Let the functions a, b, and h satisfy the conditions at ≥ 0, bx − h ≥ 0 on QT , b ≥ 0 on [0, x0]× [0,T ] with
x0 ∈ (0, 1], and b(1, t) ≤ 0 for all t ∈ [0,T ]. Then the solution u of the problem (1)–(3) satisfies the inequality

‖u(x0, t)‖L1(0,T ) ≤ ‖ϕ‖L1(0,T ) +
x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
. (10)

Corollary 1. Let x0 and the functions a, b, h, satisfy the conditions of Theorem 4. If ψ = 0 and ξ = 0, then the solution
to the problem (1)–(3) satisfies the following inequality:

‖u(x0, t)‖L1(0,T ) ≤ ‖ϕ‖L1(0,T ). (11)



Extremum problem
We denote by Φ ⊂ W1

2 (0,T ) the set of control functions ϕ and by Z ⊂ L2(0,T ) the set of objective functions z. Further
we suppose that Φ is a non-empty, closed, convex and bounded set. Consider the weighted integral cost functional

J[z, ρ, ϕ] =
∫ T

0
(uϕ(x0, t) − z(t))2 ρ(t)dt, (12)

where x0 ∈ (0, 1), ϕ ∈ Φ, z ∈ Z, uϕ ∈ V1,0
2 (QT ) is the solution to the problem (1)–(3) with the given control function

ϕ, and ρ ∈ L∞(0,T ) is a real-valued weight function with

0 < ρ1 = ess inf
t∈(0,T )

ρ(t). (13)

Assuming the functions z and ρ to be fixed, consider the minimization problem

m[z, ρ,Φ] = inf
ϕ∈Φ

J[z, ρ, ϕ]. (14)

In ([21]) the following result is obtained.

Theorem 5. For any z ∈ L2(0,T ) there exists a unique function ϕ0 ∈ Φ such that

m[z, ρ,Φ] = J[z, ρ, ϕ0].

Necessary condition for a minimizer
Theorem 6. Let ϕ0 ∈ Φ be a minimizer. Then for any ϕ ∈ Φ the following inequality holds:∫ T

0

(
uϕ0 (x0, t) − z(t)

) (
uϕ(x0, t) − uϕ0 (x0, t)

)
ρ(t)dt ≥ 0.

Lower Estimates for Control Function
Theorem 4 implies a lower estimate for the norm of the control function in terms of the value of the quality functional.

Theorem 7. Let x0 and the functions a, b, h, satisfy the conditions of Theorem 4. Then the following inequality holds:

‖ϕ‖L1(0,T ) ≥ ‖z‖L1(0,T ) −
(

T J[z, ρ, ϕ]
ρ1

)1/2
− x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
. (15)

Corollary 2. Let x0 and the functions a, b, h, satisfy the conditions of Theorem 4. Suppose ψ = ξ = 0. Then the
following inequality holds:

‖ϕ‖L1(0,T ) ≥ ‖z‖L1(0,T ) −
(

T J[z, ρ, ϕ]
ρ1

)1/2
. (16)

Proofs

Proof of Theorem 4 is based on the following lemma for non-negative ϕ, ψ, and ξ.

Lemma 1. (See [23].) Let the functions a, b, h satisfy the conditions at ≥ 0 and bx − h ≥ 0 on QT , b ≥ 0 on
[0, x0]× [0,T ] with x0 ∈ (0, 1], and b(1, t) ≤ 0 for all t ∈ [0,T ]. Then any solution u to the problem (1)–(3) with ϕ ≥ 0,
ψ ≥ 0, and ξ ≥ 0 satisfies the inequality

‖u(x0, t)‖L1(0,T ) ≤ ‖ϕ‖L1(0,T ) +
x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
. (17)



Proof. To prove Theorem 4, note that any function f can be represented as the difference f = f + − f − with
f +(x) = {0, f (x)} ≥ 0 and f −(x) = {0,− f (x)} ≥ 0. We have ϕ± ∈ W1

2 (0,T ), ψ± ∈ W1
2 (0,T ), and ξ± ∈ L2(0,T ).

Considering the solutions u+ and u− to the problem (1)–(3) with the corresponding data functions ϕ±, ψ±, and ξ±, we
obtain from (17) the following estimates:

‖u+(x0, t)‖L1(0,T ) ≤ ‖ϕ+‖L1(0,T ) +
x0

a1

(
a2‖ψ+‖L1(0,T ) + ‖ξ+‖L1(0,1)

)
, (18)

‖u−(x0, t)‖L1(0,T ) ≤ ‖ϕ−‖L1(0,T ) +
x0

a1

(
a2‖ψ−‖L1(0,T ) + ‖ξ−‖L1(0,1)

)
. (19)

Therefore,

‖u(x0, t)‖L1(0,T ) ≤ ‖u+(x0, t)‖L1(0,T )‖ϕ‖L1(0,T ) + ‖u−(x0, t)‖L1(0,T )

≤ ‖ϕ+‖L1(0,T ) +
x0

a1

(
a2‖ψ+‖L1(0,T ) + ‖ξ+‖L1(0,1)

)
+ ‖ϕ−‖L1(0,T ) +

x0

a1

(
a2‖ψ−‖L1(0,T ) + ‖ξ−‖L1(0,1)

)
= ‖ϕ‖L1(0,T ) +

x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
.

�

Now we prove Theorem 6.

Proof. Denote by ϕ0 ∈ Φ a minimizer for the problem (1)–(3), (14) (the minimizer exists by virtue of Theorem
5). Now, for arbitrary ϕ ∈ Φ we obtain, by the convexity of Φ, that ϕ0 + γ(ϕ − ϕ0) ∈ Φ for γ ∈ [0, 1]. Then

0 ≤ d
dγ

J[z, ρ, ϕ0 + γ(ϕ − ϕ0)]
∣∣∣∣
γ=0

=
d

dγ

∫ T

0
(uϕ0+γ(ϕ−ϕ0)(x0, t) − z(t))2ρ(t)dt

∣∣∣∣
γ=0

= 2
∫ T

0
(uϕ0+γ(ϕ−ϕ0)(x0, t) − z(t))(uϕ(x0, t) − uϕ0 (x0, t))ρ(t)dt

∣∣∣∣
γ=0

= 2
∫ T

0
(uϕ0 (x0, t) − z(t))(uϕ(x0, t) − uϕ0 (x0, t))ρ(t)dt, (20)

and Theorem 6 is proved. �

To prove Theorem 7 we need the following result.

Lemma 2. Let B be a Banach space with the norm ‖ · ‖B. Then for all g ∈ B and y ∈ B we have

‖g‖B ≥ ‖y‖B − ‖y − g‖B. (21)

Proof. The triangle inequality ‖p + q‖B ≤ ‖p‖B + ‖q‖B with p = g and q = y − g yields

‖y‖B ≤ ‖g‖B + ‖y − g‖B. (22)

Now, from (22) we obtain the inequality (21). �

Proof. To prove Theorem 7, applying Lemma 2 for B = L1(0,T ), g = u(x0, ·), and y = z, we get

‖uϕ(x0, ·)‖L1(0,T ) ≥ ‖z(·)‖L1(0,T ) − ‖uϕ(x0, ·) − z(·)‖L1(0,T ). (23)

Now, it follows from the Holder inequality and (13) that

‖uϕ(x0, ·) − z(·)‖L1(0,T ) (24)

≤ T 1/2‖uϕ(x0, ·) − z(·)‖L2(0,T ) ≤
(

T J[z, ρ, ϕ]
ρ1

)1/2
.



By (10) and (24) we obtain

‖ϕ‖L1(0,T ) ≥ ‖uϕ(x0, ·)‖L1(0,T ) − x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
(25)

≥ ‖z(t)‖L1(0,T ) −
(

T J[z, ρ, ϕ]
ρ1

)1/2
− x0

a1

(
a2‖ψ‖L1(0,T ) + ‖ξ‖L1(0,1)

)
.

�
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