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Abstract: A fundamental phenomenon of coherent control is investigated theoretically using the
example of neon photoionization by the bichromatic field of a free-electron laser. A system exposed to
coherent fields with commensurable frequencies loses some symmetry, which manifests itself in the
angular distribution and spin polarization of the electron emission. We predict several such effects, for
example, the violation of symmetry with respect to the plane perpendicular to the polarization vector
of the second harmonic and the appearance of new components of spin polarization. Furthermore,
we predict a very efficient control of spin polarization via manipulation of the phase between the
harmonics. Experimental observation of these effects is accessible with modern free-electron lasers
operating in the extreme ultraviolet wavelength regime.

Keywords: photoelectron spectroscopy; polarization phenomena; coherent control; VUV radiation;
spin; angular momentum

1. Introduction

Spin is a fundamental property of particles and plays a crucial role at any level of
matter from elementary particles to macroscopic objects, such as magnets and even white
dwarfs. It is of a great practical importance for spintronics, ionic traps, laser cooling,
quantum computers, and other fields [1–5]. Production and detection of spin-polarized
electrons emitted in photoionization of a gas target is more challenging in comparison
with the ionization of condensed matter because the former targets are dilute and tend to
be randomly oriented. There are two necessary prerequisites for nonzero photoelectron
spin polarization: (i) the symmetry of the process contains a screw (axial vector(s)) and
(ii) noticeable spin–orbit interaction. The latter allows for distinguishing spin states of the
target atom or the residual ion, or of the electron in continuum. The directions of the axial
vectors correspond to possible photoelectron spin components.

Some well known examples are as follows: (a) The Fano effect of the electron spin
polarization in atomic photoionization by circularly polarized light [6–8]. The electrons
are collected over the full solid angle 4π. The screw is provided by the light helicity, while
the spin–orbit interaction of the photoelectron provides selectivity of the spin states in
the Cooper minimum of the cross section. Only one electron spin component parallel to
the light beam is possible. The linearly polarized light does not produce the integral spin
polarization because it is lacking the screw. (b) Spin polarization in angle-resolved electron
emission from unpolarized atoms, produced by linearly polarized light (so-called ‘dynamic’
polarization) [9]. Within the electric dipole approximation, the screw is given by the vector
product of the electric field and the direction of the electron emission. The selectivity of
spin states is provided either by resolving initial atomic or final ionic fine-structure [10],
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or by spin–orbit interaction of the photoelectron [11]. Only the spin component normal to
the reaction plane is possible. (c) Same as (b) but with circularly polarized light (so-called
’polarization transfer’). Here, an additional screw appears due to the light helicity and all
three components of the photoelectron spin generally occur.

Thus, the breaking of symmetry, which introduces additional distinguishable direc-
tions into the process, leads to new or to a change of already existing spin components
of the photoelectron. One can also be reminded of further examples from molecular
photoionization [9] and strong-field ionization [12–15].

An important example of the symmetry violation is atomic ionization by light con-
taining a coherent sum of components with commensurable frequencies. Consider the
photoelectron angular distribution (PAD) in bichromatic ionization by the first (ω) and
second (2ω) harmonics,

A +

{
h̄ω + h̄ω

h̄(2ω)

}
→ A+ + e− (1)

often called the ω + 2ω process. For colinearly polarized incoherent harmonics, in the
dipole approximation, the PADs are axially symmetric and possess a plane of symmetry
perpendicular to this symmetry axis. The symmetry axis is directed along the electric field
vector or along the photon beams direction for linearly and circularly polarized photons,
respectively. Similar symmetries occur for one circularly polarized and another for linearly
polarized harmonics, when the direction of the former beam is along the electric field of
the latter. In this case, the electric field vector points out of the reaction plane.

However, when the two harmonics are coherently added, i.e., their relative phase
is fixed, the PADs lose part of the symmetry. Examples of such a violation are shown in
Figure 1 for cases when the resulting electric field strength changes in one (Figure 1a) or
two (Figure 1b,c) dimensions. Changing the relative phase and the strength of harmonics
provides a way to control the PADs as it was realized in the ω + 2ω process 30 years
ago in the optical domain [16–18]. Recently, with the advent of longitudinally coherent
free-electron lasers, experimental studies of the coherent control in the ω + 2ω process in
the XUV wavelength range became possible and the first such measurements have been
done [19–21].

As follows from the above consideration, the photoelectron spin polarization can gain
new components and change the existing components in ω + 2ω ionization in comparison
with the case of incoherent ω and 2ω beams. The spin polarization may be controlled
by changing relative strength and phase of the two harmonics in the ω + 2ω ionization,
taking advantage of the two ionization pathways: single photon ionization by the second
harmonic 2ω and two-photon ionization by the first harmonic ω. Recently, we analyzed
these effects in the ω + 2ω process for collinear circularly polarized beams and linearly
polarized beams with parallel electric field vectors on the example of the neon atom in
the region of the 2p6–2p54s, 4s′, 3d excitations [22]. The selectivity with respect to the spin
states was provided by the fine-structure splitting of these intermediate resonances in the
two-photon ionization pathway.

Spin polarization control in the gas phase has not been realized yet. However, spin-
polarized currents in semiconductors were controlled through quantum interference in one-
and two-photon absorption of two orthogonal linearly polarized harmonics [23,24]. This
was one of the reasons to extend our previous study of the photoelectron spin polarization
in the ω + 2ω process [22] to the case of beams linearly polarized in the orthogonal direc-
tions.

The paper is organized as follows: Section 2 presents a short sketch of the theoretical
approach. In contrast to our previous paper [22], we develop the formalism in the jK-
coupling scheme of the angular momenta, which is more appropriate for the intermediate
states in the noble gas atoms. The results are presented and discussed in Section 3. We first
outline, for further comparison, some features of the electron spin polarization in one- and
two-photon ionization and for bichromatic ionization by linearly polarized harmonics with
parallel electric fields. Then, we turn to the case of crossed linearly polarized harmonics.
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The final section is devoted to our conclusions. Cumbersome formalism and details of the
atomic model for calculating the dipole matrix elements are moved to Appendix A.
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Figure 1. Electric field strength of coherent bichromatic fields (a–c) and corresponding typical PADs
(d–f): (a,d) time dependence of the linearly polarized bichromatic field and the corresponding PAD
having C∞ symmetry; (b,e) trajectory of the amplitude of the bichromatic field with the circularly
polarized counter rotating harmonics and the corresponding PAD having D3h symmetry; (c,f) similar
to (b,e) but for co-rotating components and corresponding PAD having Cs symmetry (C2v for ion-
ization of an s-shell [25]). The harmonic intensity ratio is chosen differently for different panels for
better visualization.

2. Theoretical Description

The combined electric field of the fundamental (ω) and second harmonic (2ω) is taken
in the form

E = F(t)
(
ez
√

Iω cos ωt + e2ω

√
I2ω cos(2ωt + φ)

)
, (2)

where F(t) = sin2 Ωt (Ω = ω/2N, 0 ≤ t ≤ 2πN/ω) is the pulse envelope, φ denotes the
relative phase between the two harmonics, and Iω and I2ω are their intensities. We set the
z-axis along the (unit) polarization vector of the fundamental harmonic ez, while one of the
second harmonic may be either parallel, e2ω = ez, or orthogonal, e2ω = ex (see Figure 2a).

The spin density matrix of electrons with energy k2/2 = 2ω−IP (IP is the ionization
potential) in the lowest non-vanishing order perturbation theory is expressed as

ρ(ϑ, ϕ)msm′s =
1

2J0 + 1 ∑
M f M0

(
U(1)

M0 M f ms
+ U(2)

M0 M f ms

)(
U(1)

M0 M f m′s
+ U(2)

M0 M f m′s

)∗
(3)

where ϑ, ϕ define the direction of the electron emission, U(1)
M0 M f ms

is the amplitude of
ionization by the second harmonic with a frequency of 2ω in the first order of perturbation
theory, and U(2)

M0 M f ms
is the amplitude of ionization by photons with frequency ω in the

second order of perturbation theory; M0 and M f are the magnetic quantum numbers of
the initial atomic and final ionic states, respectively, and ms is the spin projection of the
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photoelectron. We have assumed a chaotically oriented angular momentum of the initial
atomic state. Following the non-stationary perturbation theory [26], we write down

U(1)
M0 M f ms

= −i 〈ζ f J f M f , km(−)
s | e2ωD̂ | ζ0 J0M0〉 T(1) (4)

U(2)
M0 M f ms

= − ∑
n

∫
〈ζ f J f M f , km(−)

s | ezD̂ | ζn Jn Mn〉〈ζn Jn Mn | ezD̂ | ζ0 J0M0〉 T(2)
En

. (5)

Here, D̂ is the operator of the atomic electric dipole momentum and T(1) and T(2)
En

are
field-dependent factors which are given by Equations (A8) and (A9) of Appendix A.

The density matrix (3) is parameterized in terms of the spin components [27]:

ρ =
1
2

(
1 + Sz Sτ − iSn

Sτ + iSn 1− Sz

)
(6)

where Sz, Sn, and Sτ are the components of the spin polarization vector S in an arbitrary (but
fixed) coordinate system. We choose here the coordinate system ’znτ’ shown in Figure 2a
with the linear momentum ke of the photoelectron lying in the plane zτ. Combining (3)–(6),
the spin components can be expressed in terms of the dipole matrix elements. We construct
U(1)

M0 M f ms
, U(2)

M0 M f ms
and, hence, statistical tensors (3) in the jK-coupling scheme [27] in

terms of bilinear combinations of the partial-wave components of ionization amplitudes
(see AppendixA for details).
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Figure 2. (a) The coordinate systems: laboratory zxy and for spin observation zτn. The z-axis is
chosen parallel to the electric field of the beam with fundamental frequency ω, the y-axis is along
the direction of the beam propagation, the τ-axis belongs to the plane spanned by the electric vector
of the beam with the second harmonic (z-axis), and the direction of the electron emission direction;
the n-axis is normal to the latter plane; (b) scheme of the bichromatic ω + 2ω ionization in Ne at ω

between 19.0 and 20.2 eV.

Usually, spin polarization of photoelectrons is studied for heavy atoms where the
fine-structure can be energetically resolved in the photoelectron spectrum [8,15,28]. Similar
to [22], we take a comparatively light neon atom in order to focus on coherent control of
the photoelectron spin due to the fine-structure splitting of the intermediate resonances in
the two-photon ionization pathway. We suppose that the fine structure of electrons in the
continuum is unresolved.

For an illustrative example, we present data for neon ionization with the fundamental
frequency ω in the region of the 4s and 3d resonances. The scheme of the ω + 2ω process is
depicted in Figure 2b. Bound–bound and bound–continuum matrix elements are computed
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with the semi-relativistic version of the B-spline R-matrix code [29] in the length form,
taking full account of non-orthogonality of the electron orbitals (see Appendix B for details).

3. Results and Discussion

The number of optical cycles in the numerical calculations, except when scanning the
pulse duration, was set to N = 500. The latter corresponds in our case to the full pulse
duration of ≈100 fs. The intensity of the fundamental harmonic was taken as Iω = 1012

W/cm2, while the intensity of the second harmonic was chosen as 0.1% of the fundamental.
At this intensity ratio, we found the strongest effect of interference between the two
pathways in the energy region of interest.

3.1. Photoelectron Spin Polarization in Two-Photon Ionization

Spin polarization of photoelectrons in the two-photon ionization by linearly polarized
light with constant intensity was considered in [28,30]. The parameterization of the spin
polarization for pulses with finite time duration remains the same as in [30],

Sn(ϑ) = [W(ϑ)]−1 sin ϑ ∑
k=2,4

pk cosk−1 ϑ , (7)

where Sn is the spin component normal to the reaction plane (Figure 2a). Other electron
spin components vanish. The axial symmetric normalized PAD (NPAD) can be cast into
the form

W(ϑ) = 1 + ∑
k=2,4

βkPk(cos ϑ), (8)

where Pk(x) is the Legendre polynomial. Note that k takes only even values and therefore
the PAD possesses C∞h symmetry with the plane of symmetry perpendicular to the electric
field (Figure 3a). The NPAD (8) is calculated as a trace of the density matrix (3) over
the spin projections, W(ϑ, ϕ) = Tr ρ(ϑ, ϕ)msm′s . The anisotropy parameters βk and the
spin parameters pk are expressed in terms of bilinear combinations of the partial-wave
components of U(1) and U(2) (see Appendix A, the comment after Equation (A23)).

Figure 3b shows Sn(ϑ) (7) for the carrier frequency ω, corresponding to the energy of
the 4s[1/2]1 resonance. Calculated maximal values of Sn(ϑ) are as high as ±0.45.
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Figure 3. (a) Typical NPAD for two-photon ionization; (b) Sn(ϑ) for the photon energy corresponding
to the 4s[1/2]1 resonance (19.78 eV). The dashed black line shows PAD (arbitrary units); solid red
(blue) lines show positive (negative) values of the spin polarization. (c) 2D-map of Sn(ϑm), where
ϑm = arccos(1/

√
3) ≈ 54.7◦ is the ’magic’ angle, in the region of 4s and 3d resonances as a function

of the number of optical cycles N.

The dependence of Sn on the pulse duration at the ’magic angle’ ϑm (at this angle,
P2(cos ϑm) = 0) is shown by the 2D-map in Figure 3c. By increasing the time duration,
the spectral width of the pulse decreases and the resonances in values of the spin polar-
ization become sharper. Interestingly, by increasing the duration, Sn increases in the 3d
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resonances and attenuates in the 4s resonances. It may be attributed to the fact that the
dynamic spin polarization vanishes in the case of a single ionization channel [31]. The lat-
ter is a limiting case when all processes proceed via the single s intermediate state and,
therefore, all photoelectrons are described by the p wave of the continuum. Then, the case
of single-channel ionization is realized provided the spin–orbit interaction is neglected in
the initial and final atomic states, as in our model. For the intermediate 3d states, at least
two ionization channels leading to p and f continua are present.

3.2. Parallel Polarization Vectors

We focus here on effects of symmetry violation; a more detailed discussion of this
case can be found in [22]. For parallel polarizations, e2ω ‖ eω, the PAD keeps the axial
symmetry but shows ’forward/backward asymmetry’ (see Figure 4a) [22,25]. The NPAD is
now given by the expression

W‖(ϑ) = 1 +
4

∑
k=1

β
‖
k Pk(cos ϑ) . (9)

Note that terms with odd Legendre polynomials now contribute into the NPAD,
causing the above asymmetry and reducing its symmetry from C∞h of (8) to C∞ of (9).

Since e2ω ‖ eω, new spin components, in addition to Sn, do not appear. However,
the forward-backward asymmetry strongly affects the degree of spin polarization

S‖n(ϑ) = [W‖(ϑ)]−1 sin ϑ
4

∑
k=1

p‖k cosk−1 ϑ . (10)

Expressions for the parameters β
‖
k , p‖k are given by Equations (A16)–(A23). Similar

to the asymmetry of the NPAD (9) [22,25], the spin polarization (10) can be controlled by
the variation of the relative phase between the fields and their relative strength. Such a
control on S‖n(ϑ) (10) is demonstrated in Figure 4b,c in the region of the 4s[1/2]1 resonance.
The modulation of S‖n(ϑ) at a fixed ϑ with varying relative phase of the harmonics φ reaches
values of 0.6 at the angles ϑ around 50◦ and 130◦.
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Figure 4. (a) Typical NPAD for parallel electric fields of the coherent harmonics. (b) S‖n(ϑ) for
φ = 120◦ in the vicinity of the 4s[1/2]1 resonance (19.78 eV). The black line corresponds to the PAD
(arbitrary units are the same as in Figure 3a); solid red (blue) lines show positive (negative) values

of the spin polarization. (c) S‖n(ϑ) at ω = 19.78 eV, controlled by variation of the phase between the
fields φ.

As a result of symmetry violation with respect to the xy-plane (ϑ = 90◦), photoelec-
trons emitted in this plane may be polarized. This polarization is described by the term
with k = 1 in Equation (10).
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3.3. Orthogonal Polarization Vectors

The axial symmetry is violated in this case. With eω = ez and e2ω = ex, xy and zx are
the planes of symmetry (see Figure 5a) and the NPAD can be cast into the form

W⊥(ϑ, ϕ) = 1 + ∑
k=2,4

β⊥k Pk(cos ϑ) + β⊥ sin2 ϑ cos 2ϕ + ∑
k=1,3

β⊥k sink ϑ cos ϕ. (11)

The last term with odd values of k represents a contribution of the interference be-
tween one- and two-photon ionization pathways. The parameters β⊥k , β⊥ are given by
Equations (A24)–(A28). Parameters β⊥2,4 being the incoherent sum of those for one- and

two-photon processes are interrelated with β
‖
2 and β

‖
4: β

‖
2 = β⊥2 + 2β⊥, see Equations (

A15), (A16), (A24), (A25), and β⊥4 = β
‖
4, see Equations (A17) and (A26). Figure 5b clarifies

the reason of symmetry violation with respect to the zy plane. Due to the locked phases of
the two harmonics, the end of the electric field vector depicts one of the Lissajous figures
for the frequency ratio 1:2, which may be symmetric with respect to the zy plane only for
φ = 90◦. The field configuration keeps the forward-backward symmetry, which is similar
to the circularly polarized radiation [25]. However, varying the relative phase φ between
the fields with orthogonal polarizations changes the values of the anisotropy parameters,
in contrast to the ω + 2ω ionization with circular polarized fields, when varying φ, causes
space rotation of the PAD.

(b)(a)
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x y

� = 0

� = 45 �
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Figure 5. (a) Typical NPAD for orthogonal electric fields of the coherent harmonics. Two planes
of symmetry are shown: plane zx spanned by the electric fields and plane xy perpendicular to
the polarization of the field with fundamental frequency ω; (b) electric field of the two coherent
harmonics at three different relative phases of the harmonics φ.

In comparison with the previous cases with axial symmetry, new spin components, Sz
and Sτ , appear as a result of the axial symmetry violation:

S⊥z (ϑ, ϕ) = [W⊥(ϑ, ϕ)]−1 sin ϕ ∑
k=1,3

z⊥k sink ϑ, (12)

S⊥n (ϑ, ϕ) = [W⊥(ϑ, ϕ)]−1
(

sin ϑ ∑
k=2,4

p⊥k cosk−1ϑ + cos ϕ cos ϑ ∑
k=1,3

p⊥k sink−1ϑ
)

, (13)

S⊥τ (ϑ, ϕ) = [W⊥(ϑ, ϕ)]−1 sin ϕ cos ϑ
(

∑
k=1,3

p⊥k sink−1ϑ + p⊥ sin2ϑ
)

. (14)

The parameters p⊥k , p⊥, z⊥k are given by Equations (A29)–(A35). Equivalently to
Equations (13) and (14), one can write down the spin components S⊥x and S⊥y (see Equations
(A36) and (A37)). The appearance of the spin components S⊥z and S⊥τ is related to new
screws, introduced by the vector products [ke ⊗ ex] and [ez ⊗ ex], which decreases the
symmetry of the system (atom + field) from the axial symmetry with axis z to the C2v
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symmetry with axis x. The symmetry of PAD with respect to the xy-plane is a result of the
bichromatic field with the frequency ratio 1:2, and not directly connected to the geometry
of the system. For another frequency ratio, this symmetry may be violated.

Thorough analysis of Equations (12)–(14) shows that: (a) the additional spin compo-
nent mainly belongs to the yz-plane, i.e., it is connected to the [ez ⊗ ex] screw; (b) while
NPAD (11) in yz-plane (ϕ = 90◦) remains unaffected by the interference, the electrons emit-
ted in this plane acquire additional spin polarization; (c) electrons, emitted in the xy plane
(ϑ = 90◦) can be polarized only orthogonal to it, i.e., only S⊥z
(12) is non-vanishing; (d) collecting electrons emitted into the upper (ϑ < 90◦) or lower
(ϑ > 90◦) hemisphere leads to eliminating all spin components except those oriented
along the y-axis (see Equation (A37)) because the screw [ez ⊗ ex] maintains its direction
when integrating.

The value of S⊥n (Figure 6a) is modulated by the variation of the relative phase of the
harmonics φ within the interval of about 0.5; it stays between the values for one-photon
ionization and two-photon ionization with parallel polarization vectors of the fields. The
new spin components, S⊥z and S⊥τ , are depicted in Figure 6b,c for the electron emitted in
planes with maximal variations of these components. It is worth noting that a sharp change
of sign in S⊥n and S⊥τ at ϑ = 0, 180◦ (see blue and red curves in Figure 6a,b) is non-physical
and is an artifact of the rotating coordinate system, which follows the direction of the
electron emission. Note that the values of the components Sn in Figure 6a,d and Sτ in
Figure 6b,e are identical at ϑ = 0◦(180◦), as it must.

In the region of the 4s resonances, one of the two new components, S⊥τ , can reach
similar values as S⊥n with a large amplitude of the modulation of 0.6 when changing φ.
At the same time, S⊥z generally stays smaller than S⊥n .
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Figure 6. (a,d) S⊥n (ϑ) for electrons emitted in the zx plane (see Figure 5a); (b,e) S⊥τ (ϑ) for electrons
emitted in the zy plane; (c,f) S⊥z (ϑ) for electrons emitted in the zy plane. The photon energy corre-
sponds to the 4s[1/2]1 resonance (19.78 eV). In (a,b), the phase between the harmonics was fixed at
the value of φ = 120◦; in (c), it was fixed at the value of φ = 0◦. Dashed black lines show that NPAD
(arbitrary units are the same as in Figure 3a). Solid red (blue) lines correspond to positive (negative)
spin components. In (d–f), the coherent control of the spin components is demonstrated (see text).
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4. Conclusions

Spin polarization of photoelectrons has been considered in atomic ionization by lin-
early polarized light with the coherent sum of the fundamental frequency ω and its second
harmonic 2ω for two beams polarized in the same and in orthogonal directions. It is demon-
strated how violation of the symmetry of the ω + 2ω process leads to new components of
the spin polarization. A possibility of coherent control on the spin polarization by manip-
ulating the relative phase of the harmonics is demonstrated with numerical examples of
photoionization of the neon atom in the region of the intermediate 4s resonances. The vari-
ation of the spin polarization with the changing of the relative phase of the harmonics is
quite large and can be of the order of unity.
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Appendix A. Statistical Tensor Formalism

Our approach is based on statistical tensor formalism [27,32]. The statistical tensor of
spin 1

2 is defined as

ρksqs

(
1
2

,
1
2

)
= ∑

msm′s

(−1)
1
2−m′s

(
1
2 ms, 1

2 −m′s | ksqs

)
〈 1

2 ms | ρ | 1
2 m′s〉 (A1)

where ms(m′s) is the spin projection. 〈 1
2 ms | ρ | 1

2 m′s〉 is the spin density matrix, and standard
notation for the Clebsch–Gordan coefficient is used. Below, we abbreviate ρkq ≡ ρkq(

1
2 , 1

2 ).
The Cartesian components of electron spin polarization are related to the statistical

tensors (A1) (given in the same coordinate system):

Sz = ρ10/ρ00 (A2)

Sn = −i(ρ11 + ρ1−1)/
√

2 ρ00 (A3)

Sτ = −(ρ11 − ρ1−1)/
√

2 ρ00 . (A4)

Because we are interested in dimensionless parameters of angular anisotropy and spin
polarization, we do not normalize the density matrix and its trace is proportional to the
ionization probability.

Components of statistical tensors of the electron spin, as a function of the electron
emission angle, can be expanded in terms of spherical harmonics. We write it down in the
coordinate system zτn, associated with the electron emission:

ρksqs = ∑
kl ql k

nmλλ′

cλc∗λ′ (klql , ksqs | kλ− λ′) Bnγ,mγ
λ,λ′ [kl , ks, k]

√
4π

k̂l
Yklql

(ϑ, ϕ) eiqs ϕ (A5)

where Yklql
(ϑ, ϕ) is the spherical harmonic dependent on the electron angular momentum l

and its projection on the z-axis ml ; angles ϑ, ϕ determine the direction of the electron emis-
sion.
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Bnγ,mγ
λ,λ′ [kl , ks, k] are bilinear combinations of the ionization amplitudes, independent

of the coordinate system. The meaning of the indices is the following: nγ, mγ represents
the number of photons (n, m = 1, 2) absorbed in the first/second amplitude, and λ, λ′ are
determined by the photon polarization, i.e., cλ = δλ,0 for photons linearly polarized in ez
direction, for photons linearly polarized in the ex direction cλ = −λ/

√
2.

We use the following abbreviations:

D(1)
J f lK:1 ≡ −i i−l eiδl T(1) 〈E, (J f l)K : J = 1 ||D || E0, 0〉, (A6)

D(2)
J f lK:J ≡ (−i)2 i−leiδl (10, 10 | J0)

1√
3

×
(

∑
n

T(2)
En
〈E, (J f l)K : J ||D || En, Jn = 1〉〈En, Jn = 1 ||D || E0, 0〉

)
. (A7)

Here, E is the energy of the electron, E0 is the energy of the initial state, δl is the scat-
tering phase in the photoionization channel with orbital angular momentum l, J f is the
total angular momentum of the final ion, J is the total angular momentum of the system
‘ion+electron’, Jn = 1 is the total angular momentum of the intermediate state with energy
En, and standard notation for Clebsch–Gordan coefficients is used. The time-dependent
factors are:

T(1) =
F0

2
e−iφ

NT∫
0

sin2(Ωt′) ei(E−E0−2ωt′)dt′, (A8)

T(2)
En

=

(
F0

2

)2 NT∫
0

sin2(Ωt′) ei(E−En−ω)t′
t′∫

0

sin2(Ωt′′) ei(En−E0−ω)t′′dt′′ dt′. (A9)

The dynamical parameters for each part of the statistical tensor (A5) are expressed in
terms of the dipole matrix elements with

Bγ,γ
λ,λ′ [kl , ks, k] = (−1)1−λ′(1λ, 1−λ′ | kq)∑

ν

Zkl ksk(ν; 1, 1) D(1)
J f lK:1D(1)∗

J f l′K′ :1 , (A10)

B2γ,2γ
0,0 [kl , ks, k] = ∑

νJ J′
(−1)J′(J 0, J′0 | k0) Zkl ksk(ν; J, J′) D(2)

J f lK:J D(2)∗
J f l′K′ :J′ , (A11)

Bγ,2γ
λ,0 [kl , ks, k] = ∑

νJ
(−1)J(1λ, J0 | kλ) Zklksk(ν; 1, J′) D(1)

J f lK:1 D(2)∗
J f l′K′ :J , (A12)

B2γ,γ
0,λ [kl , ks, k] = ∑

νJ
(−1)1−λ(J 0, 1−λ | k− λ) Zklksk(ν; J, 1) D(1)∗

J f l′K′ :1 D(2)
J f lK:J , (A13)

where

Zklksk(ν; J, J′) =
1

4π
(−1)kl+K+J f k̂l k̂sK̂K̂′ l̂ l̂′(l0, l′0 | kl0)

{
l K J f

K′ l′ kl

}
K 1

2 J
K′ 1

2 J′

kl ks k

 (A14)

â =
√

2a + 1, standard notation for Wigner nj-symbols are used, and we introduced the
multi-index ν = {J f , l, l′, K, K′}. Permutation of the upper indices in (A12) or (A13) gives

the relation B2γ,γ
λ,λ′ [kl , ks, k] = (−1)λ+kl+ks+kBγ,2γ∗

λ,λ′ [kl , ks, k]. For single-photon ionization
parameters, there are additional interrelations Bγ,γ

1,1 [0, 0, 0] = Bγ,γ
0,0 [0, 0, 0] = Bγ,γ

−1,−1[0, 0, 0]
and Bγ,γ

0,0 [2, 0, 2] = −2Bγ,γ
1,1 [2, 0, 2] = −2Bγ,γ

−1,−1[2, 0, 2] = −
√

3/2 Bγ,γ
1,−1[2, 0, 2].
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The angle and spin integrated ionization probability does not depend on the orienta-
tion of the polarization vector

σ = B2γ,2γ
0,0 [0, 0, 0] + Bγ,γ

0,0 [0, 0, 0] ≡ B2γ,2γ
0,0 [0, 0, 0] + Bγ,γ

1,1 [0, 0, 0], (A15)

Performing the necessary transformations, we obtain:

(a) For fields polarized in the same direction.

Angular distribution coefficients

β
‖
2 = σ−1

(
B2γ,2γ

0,0 [2, 0, 2] + Bγ,γ
0,0 [2, 0, 2]

)
, (A16)

β
‖
4 = σ−1B2γ,2γ

0,0 [4, 0, 4], (A17)

β
‖
1 = σ−12 Re

(
Bγ,2γ

0,0 [1, 0, 1]
)

, (A18)

β
‖
3 = σ−12 Re

(
Bγ,2γ

0,0 [3, 0, 3]
)

. (A19)

Polarization coefficients

p‖2 = σ−1Im

(
−
√

3
2

(B2γ,2γ
0,0 [2, 1, 2] + Bγ,γ

0,0 [2, 1, 2]) +
3
√

5
4
√

2
B2γ,2γ

0,0 [4, 1, 4]

)
, (A20)

p‖4 = −σ−1 7
√

5
4
√

2
Im
(

B2γ,2γ
0,0 [4, 1, 4]

)
, (A21)

p‖1 = σ−1Im

(
−Bγ,2γ

0,0 [1, 1, 1] +

√
3

2
√

2
Bγ,2γ

0,0 [3, 1, 3]

)
, (A22)

p‖3 = −σ−1 5
√

3
2
√

2
Im
(

Bγ,2γ
0,0 [3, 1, 3]

)
. (A23)

Leaving in Equations (A15)–(A23) only dynamical parameters B2γ,2γ
λ,λ′ or Bγ,γ

λ,λ′ , one
obtains expressions for the two-photon or one-photon ionization, respectively.

(b) For fields polarized in orthogonal directions.

Angular distribution coefficients

β⊥2 = σ−1
(

B2γ,2γ
0,0 [2, 0, 2] + Bγ,γ

1,1 [2, 0, 2]
)

, (A24)

β⊥ = −σ−1 1
2

√
3
2

Bγ,γ
1,−1[2, 0, 2] = −σ−1 3

2
Bγ,γ

1,1 [2, 0, 2], (A25)

β⊥4 = σ−1 B2γ,2γ
0,0 [4, 0, 4], (A26)

β⊥1 = σ−1 Re
(

2Bγ,2γ
1,0 [1, 0, 1] + 2

√
6Bγ,2γ

1,0 [3, 0, 3]
)

, (A27)

β⊥3 = −σ−15

√
3
2

Re
(

Bγ,2γ
1,0 [3, 0, 3]

)
. (A28)
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Polarization coefficients

z⊥1 = σ−1Im

[
−
√

2
(

Bγ,2γ
1,0 [1, 1, 1] + Bγ,2γ

1,0 [1, 1, 2] + Bγ,2γ
1,0 [3, 1, 3]

)
+

8√
7

Bγ,2γ
1,0 [3, 1, 2]

]
, (A29)

z⊥3 = σ−1Im
[

5
2
√

2
Bγ,2γ

1,0 [3, 1, 3]− 10√
7

Bγ,2γ
1,0 [3, 1, 2]

]
, (A30)

p⊥2 = σ−1Im

[
−
√

3
2 (B2γ,2γ

0,0 [2, 1, 2] + Bγ,γ
1,1 [2, 1, 2]) +

3
√

5
4
√

2
B2γ,2γ

0,0 [4, 1, 4]

]
, (A31)

p⊥4 = −σ−1 7
√

5
4
√

2
Im
[

B2γ,2γ
0,0 [4, 1, 4]

]
, (A32)

p⊥1 = σ−1Im

[√
2
(

Bγ,2γ
1,0 [1, 1, 1]− Bγ,2γ

1,0 [1, 1, 2] + Bγ,2γ
1,0 [3, 1, 3]

)
− 2√

7
Bγ,2γ

1,0 [3, 1, 2]

]
, (A33)

p⊥3 = −σ−1 15
2
√

2
Im
[

Bγ,2γ
1,0 [3, 1, 3]

]
, (A34)

p⊥ = σ−1Im

[
5√
2

Bγ,2γ
1,0 [3, 1, 3] +

10√
7

Bγ,2γ
1,0 [3, 1, 2]

]
. (A35)

Spin components in the laboratory system

S⊥x (ϑ, ϕ) = [W⊥(ϑ, ϕ)]−1 sin ϑ sin ϕ

(
−∑

k=2,4
p⊥k cosk−1 ϑ + p⊥ cos ϕ

sin 2ϑ

2

)
(A36)

S⊥y (ϑ, ϕ) = [W⊥(ϑ, ϕ)]−1

[
sin ϑ cos ϕ

(
∑

k=2,4
p⊥k cosk−1 ϑ

)
+ p⊥ sin2 ϕ

sin 2ϑ

2

+ cos ϑ ∑
k=1,3

p⊥k sink−1 ϑ

]
. (A37)

Appendix B. Atomic Model

The ground state of Ne was obtained by a full self-consistent Hartree–Fock calcu-
lation of the 1s22s22p6 configuration [33]. For the intermediate excited states, we first
found the configuration state functions (CSFs) by self-consistent term-dependent calcu-
lations for each of the configurations 1s22s22p5ns (n = 3, 4, 5, 6), 1s22s22p5nd (n = 3, 4, 5),
1s22s22p43s3p, 3p4s, and 1s22s12p53s3d with all possible terms. Then, we mixed all the
obtained CSFs using the Breit–Pauli atomic Hamiltonian with full accounting of non-
orthogonality of the electron orbitals [29]. Table A1 presents the intermediate states with
the total angular momentum J = 1, which were taken into account in the calculations of
the second-order amplitudes (summations over l, l′, K, K′ in Equations (A10)–(A13)). These
wave functions were used also in the R-matrix calculations of the dipole matrix elements
for transitions to the continuum. To obtain the ionic states (thresholds) in the R-matrix
calculations, we first individually optimized each of the configurations from the lists:

(a) odd CSFs: 1s22s22p5; 1s22s22p43p; 1s22s22p33s2, 4s2, 3p2, 3d2; 1s22s12p53s, 3d, 4s;
1s22s02p53s2, 3d2, 4s2, 3p2.

(b) even CSFs: 1s22s12p6; 1s22s12p53p; 1s22s12p43s2, 4s2, 3d2, 3p2; 1s22s22p43s, 3d, 4s;
1s22s02p63s, 3d, 4s.
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Then, we mixed them (for each of the two parities separately) similar to the atomic excited
states and took the states
1s22s22p5(2P3/2,1/2); 1s22s12p6(2S1/2);
1s22s22p43s(2S1/2,2P3/2,1/2,2D5/2,3/2,4P5/2,3/2,1/2)
as the thresholds in the R-matrix calculations. Experimental energies of the thresholds are
used [34].

Table A1. Intermediate discrete states of neon with J = 1 with their excitation energies [34] and
leading LS-terms of the configuration decomposition.

State E, eV Leading Configurations

2p5(2P3/2)3s[3/2] 16.67 −0.92|2p53s 3P〉 − 0.39|2p53s 1P〉
2p5(2P1/2)3s[1/2] 16.85 −0.38|2p53s 3P〉+ 0.92|2p53s 1P〉
2p5(2P3/2)4s[3/2] 19.69 −0.69|2p54s 3P〉 − 0.71|2p54s 1P〉
2p5(2P1/2)4s[1/2] 19.78 0.71|2p54s 3P〉 − 0.69|2p54s 1P〉
2p5(2P3/2)3d[1/2] 20.03 0.89|2p53d 3P〉 − 0.43|2p53d 1P〉 − 0.12|2p53d 3D〉
2p5(2P3/2)3d[3/2] 20.04 0.27|2p53d 3P〉+ 0.72|2p53d 1P〉 − 0.64|2p53d 3D〉
2p5(2P1/2)3d[3/2] 20.14 −0.36|2p53d 3P〉 − 0.54|2p53d 1P〉 − 0.76|2p53d 3D〉
2p5(2P3/2)5s[3/2] 20.57 −0.62|2p55s 3P〉 − 0.78|2p55s 1P〉
2p5(2P1/2)5s[1/2] 20.66 −0.76|2p55s 3P〉+ 0.60|2p55s 1P〉
2p5(2P3/2)4d[1/2] 20.70 0.87|2p54d 3P〉 − 0.39|2p54d 1P〉 − 0.16|2p54d 3D〉−

−0.20|2p55s 3P〉+ 0.17|2p55s 1P〉
2p5(2P3/2)4d[3/2] 20.71 0.18|2p54d 3P〉+ 0.73|2p54d 1P〉 − 0.66|2p54d 3D〉−

−0.05|2p55s 3P〉+ 0.05|2p55s 1P〉
2p5(2P1/2)4d[3/2] 20.81 0.39|2p54d 3P〉+ 0.57|2p54d 1P〉+ 0.73|2p54d 3D〉
2p5(2P3/2)6s[3/2] 20.95 0.60|2p56s 3P〉+ 0.80|2p56s 1P〉
2p5(2P3/2)5d[1/2] 21.01 0.90|2p55d 3P〉 − 0.40|2p55d 1P〉 − 0.18|2p55d 3D〉
2p5(2P3/2)5d[3/2] 21.02 0.18|2p55d 3P〉+ 0.72|2p55d 1P〉 − 0.67|2p55d 3D〉
2p5(2P1/2)6s[1/2] 21.04 −0.80|2p56s 3P〉+ 0.60|2p56s 1P〉
2p5(2P1/2)5d[3/2] 21.11 0.40|2p55d 3P〉+ 0.57|2p55d 1P〉+ 0.72|2p55d 3D〉
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