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Abstract—This paper is devoted to the numerical study of shock wave (SW) propagation in a medium with a
nonuniform density distribution. The mathematical model is based on the Euler equations, which are solved
in the shock-attached frame. This approach makes it possible to carry out an accurate characteristic analysis
of the problem. First, the problems of SW propagation in a medium with finite-length segments with linearly
increasing and decreasing density are considered. The obtained results are compared with the known analyt-
ical solutions. Then the case of a continuous change in the density of the medium in front of the SW according
to the sinusoidal law is considered. The resulting f low is described and explained using the results for the case
of a linear density gradient.
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INTRODUCTION
In the last few years, there has been an increase in

the number of works devoted to the problems of prop-
agation of detonation waves in inhomogeneous gas
mixtures. Such problems are of interest not only from
the point of view of the fundamental foundations of
the theory of detonation but also from a practical point
of view. One specific application is to prevent acciden-
tal detonation in mines where an explosive mixture
can accumulate in isolated parts. In such a mixture, for
various reasons, the formation of a fuel concentration
gradient is possible, which, in turn, will affect the igni-
tion mechanism of the mixture, as well as the transi-
tion of combustion to detonation and its subsequent
propagation. However, the main reason for active
research into the features of detonation processes in
inhomogeneous gas mixtures is the development of
engines based on continuous rotating detonation [1–4].
In such engines, the oxidizer and fuel are injected into
the unit separately, which leads to the propagation of
detonation through a highly inhomogeneous mixture.

To describe the complex process that occurs in real
installations, studies of model formulations are carried
out, when considering which the mechanisms of deto-
nation propagation in inhomogeneous media are clar-
ified. The following groups of works can be distin-
guished in which the propagation of detonation in a
flat channel is studied:

• in a medium with a variable longitudinal [5, 6]
and transverse [7–9] fuel concentration gradient;

• in a medium with a variable mixture density [10, 11];
• along [12, 13] or across an [14] inert gas layer;
• within analogous equations [15].
Of particular note is the recent work [16], in which

the ratios of the contributions of the following two
components to the final nonlinear dynamics of the
process of propagation of a detonation wave in an
inhomogeneous medium are studied: the first compo-
nent is related to the pulsating nature of the detonation
wave as such, which also manifests itself in a homoge-
neous medium; and the second component is due to a
periodic change in the parameters ahead of the front
of the leading shock wave (LSW). It has been found
that, depending on the parameters of the problem,
both the amplification of parameter f luctuations
behind the detonation wave front and, conversely,
their stabilization in comparison with the case of a
homogeneous medium, can occur.

In our previous work [17, 18], computational algo-
rithms were constructed to simulate detonation in the
shock-attached frame (SAF), in the one- [17] and two-
stage [18] models of the kinetics of chemical reactions.
Let us briefly summarize the main advantages and dis-
advantages of detonation calculations in a SAF [18]. In
such a setting, on the one hand, a transition to a
noninertial coordinate system is carried out, since the
speed of the shock-attached frame depends on time.
This leads to a transformation of the usual Euler equa-
tions that form the base of the mathematical model:
the a priori unknown velocity of the shock-attached
670
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frame begins to appear, to find which it is necessary to
use certain additional considerations [19–21]. The
noninertiality of the coordinate system and the need to
consider additional equations for the wave velocity
determine the greater complexity of this approach
from the point of view of its software implementation
compared to the numerical solution of the Euler equa-
tions in a fixed, laboratory coordinate system. On the
other hand, considering the problem in the SAF has
three main advantages.

First, this approach requires significantly less com-
putational costs than the traditional consideration of
the problem of detonation initiation and propagation
in the laboratory coordinate system (see, for example,
[22]). Here, the computational domain physically cor-
responds to a partial or full-length channel in which
the propagation of a detonation wave is considered,
and always to some domain directly behind the LSW
front.

Second, this approach makes it possible to accu-
rately fix the parameters directly behind the LSW
front. The shock wave (SW) is a fixed boundary of the
computational domain and does not experience
numerical smearing, which inevitably occurs in the
shock-capturing methods.

Third, the SAF is much more suitable for the char-
acteristic analysis of the f low field behind the detona-
tion wave front [23]. Characteristic analysis, in con-
trast to the analysis of only pressure fields, density,
mass fraction of the reactant, and gas velocity, which
is usually carried out to illustrate the dynamics of det-
onation propagation, is able to explain the observed
flow modes. In the work [19] such an analysis made it
possible to generalize the notion of a sound point from
the Chapman–Jouguet theory for the case of a non-
stationary pulsating detonation wave. Moreover, the
realized pulsating f low modes can also be explained
from a quantitative point of view by analyzing the
behavior of the characteristics, as was done in [18, 23].

These factors stimulate the calculations of the
propagation of a detonation wave in an inhomoge-
neous gas mixture in the coordinate system of the front
of the shock-attached frame. When constructing such
an algorithm, it is necessary to develop appropriate
computational algorithms for calculating the propaga-
tion of an SW in an inhomogeneous medium.

The objectives of this work are as follows:
• development of a computational algorithm for

modeling SW propagation in a medium with a density
disturbance in the SAF;

• carrying out, using the developed algorithm, the
characteristic analysis of the dynamics of SW propaga-
tion in a medium with a linear density distribution (the
problem considered in the works of Chisnell and
Whitham [24, 25]) and sinusoidal density distribution
(the Shu–Osher problem [26]).
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MATHEMATICAL MODEL 
AND PROBLEM STATEMENT

The mathematical model is based on the Euler
equations, supplemented by the ideal gas equation of
state and written in vector form in the  coordi-
nate system related to the LSW front:

(1)

Here  is the density of the gas,  is the gas velocity in
the laboratory coordinate system   is velocity
of the SW,  is the gas pressure,  is the total energy of
the gas per unit volume,  is the specific internal
energy of the gas, and  is a fixed value of the adiabatic
index, which was taken equal to 1.4 in all calculations.
The effects of viscosity, molecular diffusion, and ther-
mal conductivity are neglected. Note that the gas
velocity  in the system of equations (1) is related to the
speed of the LSW through the following equation:

where  is the gas velocity in the SAF. The second of
the system of equations (1), the momentum equation
written in terms of the velocity  will look like this:

(2)

which coincides with the classical result from [27].
Equation (2) differs from the usual Euler equation by
adding the inertia force 

To determine the SW velocity in the SAF, the
defining system of equations (1) is written in charac-
teristic form along the -characteristics:

(3)

where, in the first equation of the system, the material
derivative along the -characteristic is denoted
through d/dt; and the speed of sound, through . Sub-
script 0 denotes the parameters ahead of the LSW
front. In the laboratory coordinate system, these are
known functions of the spatial coordinate, and in the
SAF formulation under consideration, these are
known functions of time. In this study
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Fig. 1. Mesh template of the difference scheme for calcu-
lating the velocity of the LSW.
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The initial SW coordinate is indicated through .
The possibility of determining the LSW velocity

when considering system (3) is due to the results of
[19], in which the dynamics of detonation wave prop-
agation were studied in a homogeneous medium, i.e.,
when  A specific difference implementa-
tion leading to an expression for the current LSW
velocity is given below in the section with the compu-
tational algorithm.

The defining system of equations is solved on a
fixed interval  The right boundary corresponds
to the LSW front. The boundary conditions deter-
mined by the Rankine–Hugoniot relations on a jump
moving at the current velocity  which is found as a
result of solving the system of equations (3) and (4)
(see the next section), are set on it. The length of the
computational area  was chosen sufficiently large so
that, for the problems under consideration, the left
boundary of the region did not affect the dynamics of
the LSW front. Formally, the left boundary of the
region was considered free and zero-order extrapola-
tion boundary conditions were used.

As the initial conditions in the entire computa-
tional domain, the same parameters are set behind the
front of the SW with the Mach number  which at
the initial moment of time begins to interact with the
spatial inhomogeneity of the density on the path of its
propagation:

(5)

COMPUTATIONAL ALGORITHM
The computational area is covered by a uniform

computational mesh. The computational cells are
numbered from 1 to  For the numerical integration
of the system of equations (1), the finite-volume dis-
cretization of the convective part and the explicit Euler
time integration scheme are used. The parameters on
the cell faces are determined as a result of a piecewise
linear reconstruction of the vector of conservative
variables using the minmod limiter. The time integra-
tion step is selected dynamically to ensure stability on
the selected mesh. The numerical f lux, which is calcu-
lated by the grid-characteristic version of the Cou-
rant–Isaacson–Rees scheme [28] takes into account
the SW velocity implicitly. In this part of solving the
equations of gas dynamics without taking into account
the occurrence of chemical reactions, the algorithm
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does not differ from the technique described in detail
in [17, 18].

The main difference from previous works in terms
of the computational algorithm is related to the
method of integrating the equations for finding the
LSW velocity, since the parameters of the medium in
front of the SW are now inhomogeneous. The discret-
ization of the system of equations (3) and (4) is as fol-
lows [19]:

(6)

Subscript s denotes the parameters on the jump at
 index *, the parameters at the point of inter-

section of the -characteristic with the x axis (see
Fig. 1). The path traveled by the LSW at the moment
of time  is indicated through Ln.

Parameters with index * are found using linear
interpolation from the known parameters at points
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(7)

The expression for the coordinate of the intersec-
tion point of the C+-characteristic with the x axis fol-
lows from the second equation of system (6):

(8)

The parameters of point  at time  are
determined from the Rankine–Hugoniot relations
analogous to parameters (5) as

(9)

Substituting expressions (7)–(9) into (6) leads to a
system of two nonlinear algebraic equations for
unknown parameters  and  which is solved
numerically by Newton’s method. The boundary con-
ditions are implemented by setting the parameters in
fictitious cells. To calculate the f luxes through the left
and right faces of the computational domain, fictitious
cells with indices  and  are introduced.
Zero-order extrapolation is applied on the left bound-
ary of the computational domain:

On the right boundary, the parameters in the ficti-
tious cell are equal to the current parameters behind
the LSW front:

PROPAGATION OF A SHOCK WAVE 
IN A MEDIUM WITH A LINEAR 

DENSITY GRADIENT
Before considering the problem of SW propagation

in a medium with a sinusoidal density distribution, let
us first consider a simpler problem, when the density
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solution for this problem. Second, a clear qualitative
analogy can be drawn between the smooth sinusoidal
density profile and the piecewise linear profile with
alternating areas of increasing and decreasing density.

The problem of SW propagation in a medium with
a linear density gradient has been studied by many
authors. Similar to the problem of the SW interaction
with a single contact discontinuity [29], when the SW
interacts with the density gradient, contact disconti-
nuities and rarefaction or compression waves
(depending on the sign of the gradient) are formed.
Rarefaction or compression waves interact with con-
tact discontinuities with the formation of rereflected
waves, which also affect the dynamics of the LSW
motion. In the work [30], using numerical analysis,
the influence of rereflected waves on the LSW front
was studied depending on various factors, such as the
Mach number of the wave, the absolute value and sign
of the density gradient, and the type of density profile
(linear change or power law). The conclusions were
based on a comparison of the numerical results with
the analytical solution of Chisnell–Whitham [24, 25]
(see Appendix A). One of the main assumptions in
constructing the analytical Chisnell–Whitham solu-
tion is the absence of the effect of rereflected waves on
the LSW front. Note that analytical estimates of the
flow parameters in shock-wave problems are also of
independent interest, for example, in problems of SW
propagation in two-phase media [31–33] and in chan-
nels of a complex shape [34].

The computational domain is the segment [–10;0].
The values of the initial density, velocity, and pressure
in the entire computational domain correspond to the
parameters behind the SW with the number 
In front of the LSW front, there is a gas at rest at a pres-
sure of  In the section of finite length of 1.0,
the gas density changes according to a linear law:

(10)

For the case of a linearly growing gas density ahead
of the LSW front  and  For the case of
linearly decreasing density  and 
Numerical setting parameters are taken from [30] (law
of density change (10) and specific values  and ) and
[26] (SW intensity). Hereinafter, all parameters are
given in a dimensionless form. The calculations were
carried out on a mesh with the number of cells

We first consider the case of a linearly growing den-
sity gradient. The SW overcomes the area with inho-
mogeneous density in time  (see Figs. 2, 3).
The procedure for constructing characteristics is
described in Appendix B. During this period of time,
compression waves and contact discontinuities are
generated behind the LSW front. In this case, the
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Fig. 2. A family of characteristics in the problem of SW
propagation over a section of a medium of finite length
with a linearly increasing density gradient.
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velocity of the LSW decreases and the Mach number
increases. Both before and after the moment in time ,
the analytical solution of Chisnell–Whitham (curve 4
in Fig. 3), which does not take into account the effect
of the rereflected waves on the LSW, differs greatly
from the numerical solution (curve 2 in Fig. 3). Note
that in [35] a modification of the analytical theory of
Chisnell–Whitham is presented for the possibility of

At
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Fig. 3. Dynamics of change of velocity (curve 1) and the Mach 
over a section of a medium of finite length with a linearly increa
Dashed-dotted curve 4 is the analytical Chisnell–Whitham solu
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taking into account the effect of rereflected waves on
the LSW.

After the density in front of the wave becomes con-
stant, the wave velocity and Mach number decrease
under the influence of the waves reflected from the
contact discontinuities behind the wave and that are
catching up with the LSW. The main changes continue
until the wave reflected from the contact discontinuity
following along the -characteristic, released at the
initial moment of time, catches up with the LSW when

 At this point in time, the LSW Mach number
reaches a value close to the asymptotic value (straight
line 5 in Fig. 3). This asymptotic behavior is deter-
mined by the solution of the Riemann problem. The
parameters on one side of the discontinuity in this
Riemann problem are the parameters behind the SW
front with a Mach number of 3.0, corresponding to the
initial time when the density value in front of the SW
is 1.0. The parameters on the right are the final param-
eters before the SW, corresponding to the point in
time when the density stops changing and its value
becomes 8.0.

Figure 2 shows that the -characteristic, along
which the compression waves reflected from the LSW
follow, gradually merge into the characteristic follow-
ing from the origin of coordinates. For this reason, the
length of the compression wave decreases as it propa-
gates. For example, at the time  in Figs. 2 and 4,
its boundaries are indicated by dots K and G. The con-
tact discontinuities formed during the passage of the
LSW in the region of variable density move at a con-
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Fig. 4. Calculated spatial distribution profiles behind the LSW front in the problem of SW propagation over a medium section of
finite length with a linearly increasing density gradient at the time instant t = 1.0. Curve 1, the density distribution; 2, velocity
distribution; 3, pressure distribution.
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stant speed. The boundary of the area of contact dis-
continuities is indicated in Figs. 2 and 4 by dots E and F.
The pressure and velocity in the region between the
LSW and the tail of the compression wave in the time
interval from  to  (for example, for the moment in
time , this is the area  in Fig. 4) are not con-
stant due to the effect of the characteristics from the
reflected characteristic triangle, IAB, in Fig. 2. The
time during which the rereflected waves continue to
affect the LSW, despite the fact that the density in
front of the SW is constant, is correlated to the time it
takes for the wave reflected from point A to move to
point I; and also for the wave rereflected from point I
to move to point B.

A similar study was carried out for the case of a
density decreasing ahead of the LSW front. In this
case, the SW overcomes the area with the density gra-
dient in the time ≈0.66. Instead of compression waves,
rarefaction waves are generated behind the LSW front.
In this case, in contrast to the case with increasing
density in front of the LSW, the LSW velocity
increases and the Mach number decreases. Also, the
analytical solution of Chisnell–Whitham, which does
not take into account the effect of rereflected waves on
the LSW, practically does not differ from the numeri-
cal one until the time t = 0.66, when the analytical
solution reaches the stationary level. According to the
assumption made in [30], this indicates that the rere-
flected waves have almost no effect on the final solu-
tion in this region. This assumption is supported by the
characteristic analysis carried out. Characteristics 
deviating from the LSW at first, reach the right bound-

At Bt
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ary of the computational domain much later, and,
accordingly, their influence on the LSW also begins
later. Characteristics  along which the rarefied
waves reflected from the LSW follow, gradually
diverge, and the distance between them increases.

After the density in front of the wave becomes con-
stant, its velocity and Mach number increase under
the influence of waves reflected from the contact dis-
continuities behind the wave and that are catching up
with the LSW. This continues until the last rereflected
wave catches up with the LSW at time  By this
time, the Mach number reaches the asymptotic level.

PROPAGATION OF A SHOCK WAVE
IN A MEDIUM WITH A SINUSOIDAL 

DENSITY DISTRIBUTION
The problem of SW interaction with a sinusoidal

density disturbance was considered in the article [26]
(hence its name, the Shu–Osher problem) as an
example illustrating the properties of high-order ENO
schemes. Over time, this problem has become a com-
mon and rather tough test for checking the implemen-
tation and properties of shock-capturing methods for
solving the Euler equations, since the solution to the
problem is a f low whose field contains both smooth
structures and moving discontinuities. For the same
reason, the Shu–Osher problem is often used to test
methods for calculating f lows with detonation waves
(see, for example, [36, 37]), since the structure of the
detonation wave front includes both the LSW and the
region of smooth parameter variation behind it, which

−,C

≈ 3.69.t
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Fig. 5. Family of characteristics in the Shu–Osher problem. Dashed horizontal straight lines denote the time moments corre-
sponding to the maximum values of the density in front of the LSW, and the dashed-dotted lines are the minimum values.
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should be very well resolved. The resolution of smooth
flow regions is possible using schemes of a higher
order of accuracy, which, at the same time, must be
sufficiently stable and not lead to the appearance of
nonphysical oscillations in the vicinity of gas-dynamic
discontinuities. The Shu–Osher problem does not
have an exact solution, and the solution from [26],
obtained on a mesh with a resolution of 6.25 × 10–3 by
the shock-capturing method of the third order of accu-
racy is considered as the standard.

Note the works [35, 38, 39], in which to study SW
propagation in a medium with a nonuniform density
distribution, including in model formulations close to
the Shu–Oscher problem, methods were used that
track the LSW front. These methods, in a sense close
to the algorithm proposed in this paper, were based on
the apparatus of moving meshes or were varieties of
the immersed boundary method.

The computational domain is the segment [–20;0].
The values of the initial density, velocity, and pressure
in the entire computational domain correspond to the
parameters behind the SW with the number 
In front of the LSW front, there is a gas at rest at a pressure
of  whose density varies according to the law

where  and  The calculations were car-
ried out on a mesh with  cells.

At the initial moment of time and up to the
moment , the density in front of the SW
increases according to the sinusoidal law. As in the
problem with a linearly growing density ahead of the
LSW front, this is accompanied by the formation of
compression waves and contact discontinuities (see
Fig. 5). In this case, the Mach number of the LSW
increases, while its speed decreases. Waves reflected
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from the LSW and following along the characteristics
 gradually merge into one characteristic, catching

up with each other. The compression wave front
becomes steeper with time. As a result, this process
leads to the formation of internal SWs. At the point in
time  the density in front of the LSW begins
to decrease, and, similarly to the case of a decreasing
linear density gradient described earlier, now rarefac-
tion waves follow along the characteristics ; and the
LSW starts accelerating, and its Mach number
decreases. Further, the process is repeated cyclically as
the SW moves through the medium with variable density.

Figure 6 shows the image of the gas density profile
behind the LSW at time  in comparison with the
profile from the work [26]. At  the den-
sity graph has the form of an oscillating curve, which
is related to the propagation to the left of the contact
discontinuities reflected from the LSW, as well as the
influence on this region of characteristics  and 
rereflected inside the zone of the contact discontinu-
ities. We can see a good agreement between the result
obtained in the calculation using the proposed algo-
rithm and the reference result [26].

Some inaccuracy in the phase of the peaks in the
region of contact discontinuities is related to errors in
the digitization of the results [26], the incomplete
identity of the time points for comparing the results,
and the need to match the graphs relative to the cur-
rent position of the LSW front for direct comparison
of the results. The differences in the amplitudes of the
peaks located at a distance from the LSW front are
important. As shown, for example, in [40], the under-
estimation of the peak amplitude is related to the
insufficiently high order of accuracy of the numerical
method. When using methods of the third and higher
orders of accuracy, the correspondence to the data
[26] in this part will be better. The specifics of solving
the problem in the SAF may also require the use of a

−,C

≈ 0.154t

−C

= 1.8t
− < <1.69 0x

+C −,C
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Fig. 6. Spatial profiles of the gas density behind the LSW
front in the Shu–Osher problem at the instant of time t =
1.8. The solid line is the calculation of the authors and the
dots are the calculation from [26].
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more accurate algorithm for determining the speed of
the LSW. In the work [17], for these purposes, we used
a locally quadratic approximation of the characteristic

 in the vicinity of the LSW.

CONCLUSIONS
1. This paper proposes an algorithm for calculating

the propagation of an SW in a medium with a variable
density in the shock-attached frame. Using the works
[17, 18], the described algorithm can be generalized to
the case of chemically reacting media in the one- and
two-stage kinetic models and applied to study the
mechanisms of detonation wave propagation in inho-
mogeneous media.

2. The operability of the computational algorithm
is demonstrated for two types of inhomogeneities in
front of the SW: a segment of finite length with a linear
density gradient and a sinusoidal density distribution.
For the case of a linear gradient, the obtained results
are compared with the analytical Chisnell–Whitham
theory, which does not take into account the effect of
rereflected waves on the LSW. Good agreement was
obtained for the case of decreasing density in front of
the SW and discrepancy between the results for the
case of increasing density, which is due to the different
degrees of influence of rereflected waves on the lead-
ing shock. The solution of the problem of the interac-
tion of an SW with a sinusoidal density distribution
(the Shu–Osher problem) was compared with the
solution presented in [26]. Good agreement is
obtained, except for the amplitudes of some peaks in
the zone of contact discontinuities. At the level of
characteristics, it is shown that the solution of the

+C
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Shu–Osher problem cyclically combines elements of
the solution of the problem of decreasing and increas-
ing linear density gradients in front of the wave.

3. The problems considered in this article serve not
only to validate the computational algorithm, they also
demonstrate the main idea of the study in the shock-
attached frame. Such a mathematical apparatus makes
it possible to carry out qualitative and quantitative
studies of f lows with shock and detonation waves in
terms of the behavior of the characteristics that reveal
the mechanics of gas-dynamic processes.

APPENDIX A
ANALYTICAL CHISNELL–WHITHAM 

SOLUTION
Let us present an analytical solution [24, 25] of the

problem of the interaction of an SW with an inhomo-
geneous medium without taking into account the
influence of waves rereflected from the contact dis-
continuities. The Chisnell–Whitham theory considers
a region of continuously varying density in front of a
wave as a collection of layers with a constant density
separated by elementary contact discontinuities. In
particular, in the works [24, 25], a relation is derived
relating the change in density in front of the SW 
and its intensity  where  is the ratio of the pressure
behind the SW to the pressure in front of the SW:

(A.1)

where  is constant and  is
the adiabatic index. Equation (A.1) implies a system of
ordinary differential equations, which should be
solved numerically with respect to the unknowns  
and number 

(A.2)

where  is the trajectory of the SW and  is the
constant pressure ahead of the SW. The derivative

 determines the given spatial distribution of
the density of the medium in front of the SW. For
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example, if the density in front of the SW is given by a
linear law:

then the corresponding derivative will be written as
follows:

The system of equations (12) was solved by the
explicit Euler method:

where subscript k denotes the value of the desired
parameters at the moment of time  and

 is the integration step.

APPENDIX B
BUILDING CHARACTERISTICS

To build characteristics  , and  in Figs. 2
and 5, the following equations were solved:

where index i = +, –, 0, indicates that the parame-
ters belong to the family of characteristics  These
equations are solved numerically using the explicit
Euler scheme:

where index n denotes the number of the current time
step. The gas velocity and sound velocity at points 
are determined using linear interpolation by parame-
ters in the centers of the cells between which the char-
acteristic falls:
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For the problems considered in the article, the
characteristics  are directed to the right boundary of
the computational domain, i.e., to the LSW. The rest
of the characteristics have the opposite gradient. The
equations for characteristics  are resolved until

 i.e., until the characteristics approach the right
boundary of the computational domain. The equa-
tions for characteristics  and  are resolved until

 and , respectively, i.e., until the char-
acteristics exceed the area on the left.

All the characteristics  were issued from points
on the axis  located at an equal distance from
each other. The characteristics  and  were issued
from the points on the axis  also located at an
equal distance from each other.
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