УДК 54-(386+383)

РАЗНОЛИГАНДНЫЕ КОМПЛЕКСЫ ТРИФТОРАЦЕТАТОВ ЩЗЭ С МОНОЭТАНОЛАМИНОМ

© 2010 г. А. В. Харченко^{1,} *, А. М. Макаревич¹, К. А. Лысенко², Н. П. Кузьмина¹

¹Московский государственный университет им. М.В. Ломоносова ²Институт элементоорганических соединений им. А.Н. Несмеянова РАН, г. Москва *E-mail: kharchenko.andrey@gmail.com Поступила в редакцию 12.04.2010 г.

Разнолигандные комплексы состава $[M(CF_3COO)_2(MEA)_n]$ (MEA = моноэтаноламин, M = Ca (I), Sr (II), n = 1.5; M = Ba (III), n = 1) получены при взаимодействии соответствующих $M(CF_3COO)_2 \cdot nH_2O$ и MEA в этаноле. Комплексы I–III охарактеризованы данными элементного анализа и ИК-спектроскопии. При медленной кристаллизации раствора III на воздухе получен монокристалл состава $[Ba(CF_3COO)_2(MEA)(H_2O)]$, который по данным РCA является координационным полимером (KЧ(Ba) 9). По данным термического анализа комплексы I–III разлагаются в аргоне и на воздухе до соответствующих фторидов при температуре ниже 400°C.

Фториды щелочноземельных элементов (ЩЗЭ) обладают уникальными физико-химическими свойствами, благодаря которым используются в оптике для изготовления оптоволоконных кабелей, антиотражающих покрытий, лазеров [1]. Фториды стронция и бария, допированные редкоземельными элементами, известны как твердые электролиты и электролюминесцентные материалы [2]. Фторид кальция применяют в качестве изолирующего эпитаксиального слоя в полупроводниковой промышленности за счет резистивных свойств и соответствия его кристаллографических параметров кремнию [3].

В настоящее время фториды ЩЗЭ получают и используют в виде керамики, нанопорошков и тонких пленок. В синтезе этих материалов особое место занимают химические методы, основанные на образовании фторидов ЩЗЭ при разложении металлорганических прекурсоров (исходных соединений) [4]. Металлорганические прекурсоры (МОП) представляют собой координационные соединения ШЗЭ с органическими фторсодержащими лигандами. Наличие фтора в этих соединениях обеспечивает преимущественное образование фторида ЩЗЭ по отношению к оксидам и карбонатам в условиях их термодинамической устойчивости (низкие температуры) и исключает использование таких фторирующих агентов как F₂ и HF, обычно применяемых в синтезе фторидных материалов [5].

В последнее время заметно активизировался интерес к получению тонких пленок и нанопорошков различного состава химическим осаждением из растворов методами MOD (Metal Organic Deposition) и/или MOCSD (Metal Organic Chemical Solution Deposition) [6, 7]. Суть этих методов состоит в получении раствора MOП, содержащего элементы-компоненты материала в необходимой стехиометрии с последующим превращением их в функциональные слои или порошки при термообработке и отжиге в соответствующих условиях.

Трифторацетаты $M(CF_3COO)_2$ (M = Ca, Sr, Ba) – наиболее популярные прекурсоры для осаждения пленок и получения нанопорошков фторидов ЩЗЭ из растворов как золь-гель методами, так и MOCSD [8-13]. Это обусловлено тем, что трифторацетаты ЩЗЭ легко синтезировать в гидратированной М(CF₃COO)₂ · *n*H₂O [14–16] и безводной [17, 18] формах, а их превращение в соответствующие фториды происходит при относительно невысокой температуре (300-400°С) [19, 20]. В методе MOCSD возможны два варианта использования трифторацетатов в качестве МОП – образование *in situ* в растворах ацетатов при использовании трифторуксусной кислоты как фторирующего агента и растворителя [13]. Второй вариант – использование растворов собственно трифторацетатов, их гетерометаллических и/или разнолигандных координационных комплексов (РЛК) для получения пленок и покрытий сложных оксидов так называемым фторидным способом, широко применяемым для получения покрытий высокотемпературных сверхпроводников [21].

Путем превращения трифторацетатов $[M(CF_3COO)_2 \cdot nH_2O]_x$ или $[M(CF_3COO)_2]_y$, для которых характерно полимерное строение [14, 22], в РЛК состава $[M(CF_3COO)_2(Q)_n]$ (Q — нейтральный донорный лиганд), можно увеличить растворимость этих соединений в органических растворителях и повысить эффективность их использования в качестве прекурсоров при получении фторидных покрытий методом MOCSD.

Соединение	Брутто-формула	Содержание (найдено/вычислено), %			
		С	Н	Ν	
Ι	C ₇ H _{10.5} CaF ₆ N _{1.5} O _{10.5}	23.60/23.50	3.04/2.96	5.15/5.87	
II	$C_7H_{10.5}SrF_6N_{1.5}O_{10.5}$	20.92/20.75	2.52/2.61	5.03/5.18	
III	$C_7H_{10.5}BaF_6N_{1.5}O_{10.5}$	17.61/16.98	1.86/1.66	3.42/3.30	
Ia	$C_5H_{3.5}CaF_6N_{0.5}O_{4.5}$	20.95/20.21	1.03/1.36	2.92/2.36	
IIa	$C_5H_{3.5}SrF_6N_{0.5}O_{4.5}$	17.07/17.45	1.11/1.02	2.06/2.03	
IIIa	$C_{4.5}H_{1.75}BaF_6N_{0.25}O_{4.25}$	13.86/14.27	0.42/0.47	1.23/0.92	

Таблица 1. Результаты элементного анализа соединений I-III и Ia-IIIa

В литературе описаны синтез и строение сравнительно небольшого числа РЛК трифторацетатов ЩЗЭ с нейтральными органическими лигандами [M(CF₃COO)₂(Q)_n], где Q — краун-эфиры и полиглимы [17, 23], пиридин и тетрагидрофуран [18]. При этом основное внимание уделено РЛК на основе трифторацетата бария.

В перспективе использования в качестве МОП интерес могут представлять РЛК с простейшим аминоспиртом—моноэтаноламином NH₂CH₂CH₂OH (MEA). С одной стороны, MEA — потенциально О,N-донорный лиганд, способный к образованию хелатных циклов, а с другой — MEA является растворителем, обладающим достаточно высокой вязкостью (~17 Па с) и используемым в методе MOCSD [24]. Сведений о РЛК трифторацетатов ЩЗЭ с MEA в литературе нет.

В настоящей работе впервые синтезированы РЛК состава $[M(CF_3COO)_2(MEA)_n]$ (n = 1.5, M = Ca, Sr; n = 1, M = Ba), изучено их поведение при нагревании в атмосфере аргона и на воздухе, решена кристаллическая структура комплекса $[Ba(CF_3COO)_2(MEA)(H_2O)].$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали карбонаты кальция, стронция и бария марки "х. ч.", трифторуксусную кислоту (Solvay, 99.9%), MEA (Sigma-Aldrich, 99%), этиловый спирт (96%).

Синтез М(CF₃COO)₂ · nH_2O (M = Ca, Sr, Ba). Гидратированные трифторацетаты М(CF₃COO)₂ · $2H_2O$ (M = Ca, Sr), Ba(CF₃COO)₂ · $3H_2O$ получали по стандартной методике [14, 15] взаимодействием стехиометрических количеств соответствующих карбонатов и трифторуксусной кислоты в водной среде. Выход составил 95% для всех соединений.

Синтез М(CF₃COO)₂(MEA)_x (M = Ca (I), Sr (II), Ba(III)). К раствору 3.75 ммоля М(CF₃COO)₂ · nH₂O в 20 мл 96%-ного этанола прикапывали 15 ммолей MEA при постоянном перемешивании. Объем реакционной смеси уменьшили до 2 мл, упаривая на воздухе. Образовавшиеся осадки отделяли центрифугированием и сушили на воздухе. Выход ~40–50%.

В результате изотермической выдержки I–III на воздухе в течение 60 мин при температуре 200°С получены комплексы следующих составов: $Ca(CF_3COO)_2(MEA)_{0.5}$ (Ia), $Sr(CF_3COO)_2(MEA)_{0.5}$ (IIa), $Ba(CF_3COO)_2(MEA)_{0.25}$ (IIIa).

Содержание С, Н, N определяли методом элементного микроанализа на анализаторе HCN Vario Місто Сиbe фирмы Elementar (Германия). Гидратный состав определяли по совокупности данных элементного и термического анализов. Содержание кальция и стронция в полученных препаратах определяли комплексонометрически, бария — гравиметрически.

ИК-спектры комплексов записывали на приборе FTIR Spectrum One фирмы Perkin Elmer в режиме нарушенного полного внутреннего отражения в области 400-4000 см⁻¹ с разрешением 0.5 см⁻¹.

Результаты элементного анализа соединений І– III, Іа–IIIа и важнейшие частоты поглощения ИКспектров приведены в табл. 1 и 2 соответственно.

Термический анализ разнолигандных соединений проводили на приборе фирмы NETZSCH (Германия) серии STA 409 в интервале температур 30– 600°С в токе воздуха и аргона (скорость нагревания 10°С/мин, навеска 5 мг, алундовый тигель).

PCA. Из раствора III в этиловом спирте получен монокристалл состава [Ba(CF₃COO)₂(MEA)(H₂O)] (**IIIb**). Кристаллы IIIb (C₆H₉BaF₆NO₆, M = 442.48) триклинные, пр. гр. $P\overline{1}$, при 100 K: a = 7.398(3), b =8.897(4), c = 11.845(7) Å, α = 102.82(2), β = 106.54(2), γ = 113.305(17)°, V = 634.9(6) Å³, Z = 2, ρ(выч.) = = 2.315 мг/м³, = 32.28 мм⁻¹.

Интенсивности 6688 отражений измерены на дифрактометре Bruker SMART APEX2 CCD (λ (Mo K_{α}) = = 0.71072 Å, ω -сканирование, 2 θ < 54°) при 100 K; 3080 независимых отражений использованы в дальнейшем уточнении. Результаты индицирования, визуальный двух- и трехмерный анализ формы отражений показал, что кристалл является двойником (другой). Все попытки найти недвойниковый обра-

КООРДИНАЦИОННАЯ ХИМИЯ том 36 № 11 2010

Соединение	ν(O–H)	ν(N–H)	v(C-H)	v _{as} (COO ⁻)	$\delta(NH_2)$	v(C-F)
Ι	3367	3237	2951, 2900	1669	1587	1189, 1129
II	3360	3135	2946, 2895	1665	1567	1196, 1128
III	3372	3196	2946, 2898	1655	1561	1188, 1129
Ia	3390	3125	2975, 2896	1659		1196, 1137
IIa	3373	3124	2936, 2885	1658		1191, 1136
IIIa	3350	3124	2980, 2896			1199, 1139

Таблица 2. Важнейшие частоты поглощения (см⁻¹) в ИК спектрах I–III, Ia–IIIa

зец даже самого небольшого размера (кристалл, с которого проводили измерения, имел размеры 0.10× × 0.03 × 0.02 мм) оказались безуспешными. Собранный массив данных был проиндицирован при помощи программы cell now и затем интенсивности измеренных отражений описаны как суперпозиция двух компонент кристалла, развернутых друг относительно друга на 179.5° вдоль направления (001). Интенсивности для каждой из компонент интегрировали отдельно и включали в уточнение в виде файла данных формата HKLF 5 (значение BASF составило 0.29). Все эквивалентные отражения усредняли при использовании программы TWINABS. Структура решена прямым методом и уточнена полноматричным МНК по F² в анизотропно-изотропном приближении. Атомы водорода локализованы в разностных синтезах электронной плотности и уточнены по модели наездника. Факторы недостоверности для IIIb составили $wR_2 = 0.1404$ и GOOF = 0.992 для всех независимых отражений ($R_1 = 0.0583$ по F для 2338 отражений с $I > 2\sigma(I)$). Все вычисления проводились с использованием комплекса программ SHELXTL PLUS 5.0. Структура депонирована в Кембриджском банке структурных данных (№ 780570; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam. ac.uk).

Рентгенофазовый анализ порошкообразных образцов проводили на дифрактометре с вращающимся анодом Rigaku D/MAX 2500 (Япония) (Си K_{α} -излучение).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В литературе сведения о синтезе РЛК из трифторацетатов ЩЗЭ и аминоспиртов имеются для трифторацетата бария с N-метил-диэтаноламином (**MDEA**) и триэтаноламином (**TEA**) [22, 25], интерес к которым возник в связи с получением Cu–Ba гетерометаллических алкоголятокарбоксилатов. Комплексы состава [Ba(CF₃COO)₂(Q)_n] (Q = MDEA, n = 3 и Q = TEA, n = 2) получили при взаимодействии полимерного [Ba(CF₃COO)₂]_n с соответствующими Q (мольное соотношение реагентов 1 : 4) в ТГФ. В данной работе РЛК с MEA получали путем взаимодействия гидратированных трифторацетатов M(CF₃COO)₂ · nH₂O с MEA (1 : 4) в этаноле

$$M(CF_{3}COO)_{2} \cdot nH_{2}O + 4MEA \rightarrow$$

$$\rightarrow [M(CF_{3}COO)_{2}(MEA)_{x}] + yH_{2}O.$$
(1)

При таком подходе к синтезу существовала опасность образования гидроксосоединений, поскольку в присутствии воды MEA проявляет явно выраженные оснувные свойства [26]. Твердые продукты взаимодействия по реакции (1) удалось выделить только при концентрировании реакционной смеси с небольшим выходом (40–50%), что свидетельствует об их высокой растворимости в этаноле (>0.5 моль/л). По совокупности данных элементного, ИК-спектроскопического и термического анализов полученные продукты имеют состав [Ca(CF₃COO)₂(MEA)_{1.5}] (I), [Sr(CF₃COO)₂(MEA)_{1.5}] (II), [Ba(CF₃COO)₂(MEA)] (III).

ИК-спектры I–III имеют сходный характер. Отнесение основных полос поглощения сделано с учетом данных литературы по ИК-спектрам разнолигандных трифторацетатов бария [23] и МЕА [27]. В области 1690-1655 см⁻¹ проявляются интенсивные полосы, обусловленные колебаниями v_{as}(COO⁻). Надежное отнесение полос, отвечающих колебаниям $v_s(COO^-)$, осложнено тем, что в области ~1460-1430 см⁻¹ присутствуют также полосы поглощения Полосы, обусловленные колебаниями MEA. v(C-H) и v(C-F), обнаружены в областях 2860-2960 и 1100-1200 см⁻¹ соответственно. В ИК-спектрах I-III присутствуют и полосы поглощения МЕА. Полоса при 1562-1567 см⁻¹ отвечает колебаниям $\delta(NH_2)$ и смещена в низкочастотную область по сравнению с ее положением в спектре свободного (некоординированного) МЕА [27], что можно рассматривать как косвенное доказательство координации аминогруппы или ее участия в водородных связях (ВС). В высокочастотной области на фоне широкой полосы (3200-3600 см⁻¹) проявляются пулосы валентных колебаний связей О-H (3360-3370 см⁻¹) и N-H (3200-3100 см⁻¹). Широкая полоса поглощения в этой области спектра может быть обусловлена существованием в этих соединениях разветвленной системы ВС с участием групп ОН, либо присутствием молекул воды. Последнее предположение исключено на основании данных термического анализа (рис. 1). На кривых ТГ нет низкотемпературных

Рис. 1. ТГ–ДТГ анализ комплексов I–III в атмосфере аргона и воздуха.

стадий, которые могли соответствовать процесс дегидратации. Однако на термограммах комплексов II и III отмечена стадия потери массы (~0.5%) при температуре ниже 100°С ($T_s \sim 85$ °С), что в расчете на отщепление одной молекулы воды должно составить 4.2 и 4.1% соответственно. По-видимому, наблюдаемый эффект соответствует удалению небольшого количества адсорбированного растворителя в принципе согласуется с несколько завышенным содержанием углерода и водорода в III.

При медленной кристаллизации на воздухе раствора III в этаноле был получен монокристалл, в состав которого входит молекула воды — [Ba(CF₃COO)₂(MEA)(H₂O)] (IIIb). Комплекс IIIb представляет собой координационный полимер со слоистой структурой. В каждом слое ионы бария объединены тетрадентатными мостиковыми карбоксильными группами в зигзагообразные цепочки, параллельные направлению [001] (рис. 2а). Связь между цепочками внутри слоя образована парами бидентатных карбоксилатных лигандов, соединяющих два иона бария из соседних цепочек.

В кристаллической структуре IIIb все ионы бария эквивалентны, их координационный полиэдр (КЧ 9) образован шестью атомами кислорода пяти мостиковых трифторацетатных групп (двух бидентатных и трех тетрадентатных), атомом кислорода молекулы воды, атомами кислорода и азота молекулы МЕА (рис. 2б). Длины связей Ва-О находятся в интервале 2.66–2.90 Å. Тетрадентатные трифторацетатные группы связывают четыре иона бария внутри зигзагообразной цепочки. Длины связей Ва-О в этих фрагментах составляют 2.74, 2.80, 2.88 и 2.90 А. В бидентатных мостиковых группах длины связей Ва-О также неравноценны (2.66 и 2.77 Å). Длины связей Ва-O(MEA), Ва-N и Ва-O(H₂O) равны 2.76, 2.88 и 2.85 Å соответственно. В зигзагообразных цепочках координационные полиэдры объединены общей гранью (рис. 2a). Величина угла ВаВаВа 104.7°, расстояние Ва-Ва составляет 4.67 Å. Расстояние между ионами бария соседних цепочек, связанных двумя бидентатными мостиковыми группами CF₃COO, существенно больше (5.88 Å).

Связь между слоями в кристаллической структуре осуществляется за счет пар ВС (рис. 3), в каждой из которых участвуют атомы водорода аминогруппы, соседней с ней группы CH_2 молекулы МЕА и два атома фтора двух трифторацетатных лигандов соседнего слоя.

В литературе есть сведения о структуре двух РЛК, полученных из трифторацетата бария и N-метил-диэтаноламином – $[Ba(\eta^1-CF_3COO)_2\{MeN(C_2H_4OH)_2\}_2]$ (IV) [25], и

Рис. 2. Фрагмент упаковки зигзагообразных цепочек, параллельных направлению {001}, в кристаллической структуре IIIb (a), координационный полиэдр иона бария (б).

КООРДИНАЦИОННАЯ ХИМИЯ том 36 № 11 2010

Рис. 3. Фрагмент слоистой упаковки в структуре IIIb (водородные связи между слоями).

[Ba{MeN(C₂H₄OH)₂}₃](CF₃COO)₂ (V) [22] и представляющих собой моноядерные молекулы. Согласно данным PCA, координационные полимеры в структуре IV, V – РЛК трифторацетата бария с такими нейтральными органическими лигандами, как 15-краун-5, тетраглим, пиридин [18, 23]. В них обнаружены различные типы координации мостиковых трифторацетатных лигандов – бидентатная, тридентатная и тетрадентатная. Структура этих соединений и тип координации трифторацетатных групп зависят от дентатности, количества и типа нейтральных лигандов, входящих в их состав. Длины связей Ba–O(Tfa), где Tfa – трифторацетат, находятся в диапазоне 2.64–3.08 Å.

Структуру IIIb можно сопоставить со структурой $[Ba_2(CF_3COO)_4(тетраглим)]_{\infty}$ (VI) [23], также представляющий собой координационный полимер. Кристаллическая структура VI состоит из зигзагообразный цепочек, в которых ионы связаны мостиковыми лигандами — бидентатными и тетрадентатными Тfa и бидентатным тетраглимом. В этой структуре расстояния Ba—O(Tfa) лежат в интервале 2.68—3.08 Å, т.е. близки к таковым в структуре IIIb. В структуре VI расстояния Ba—Ba в зигзагообразных цепочках неравноценны (4.51 и 4.32 Å), что короче, чем в структуре IIIb. В VI межмолекулярные взаимодействия (водородные связи) между цепочками не рассматриваются.

Изучение термолиза полученных РЛК I–III – важный этап их характеристики как потенциальных прекурсоров в методе MOCSD. При этом важно выяснить, как превращение в РЛК повлияло на термическую устойчивость исходных трифторацетатов. Общеизвестно, что гидратированные и безводные трифторацетаты ЩЗЭ легко превращаются в соответствующие фториды при относительно низкой температуре (300–400°С) [19, 20]. В настоящей работе термический анализ в атмосфере аргона и на воз-

Рис. 4. ТГ–ДТГ анализ гидратов трифторацетатов кальция, стронция и бария в атмосфере аргона.

духе выполнили для РЛК I–III (рис. 1) и для исходных гидратов $M(CF_3COO)_2 \cdot nH_2O$ в атмосфере аргона (рис. 4).

При нагревании в атмосфере аргона дегидратация $M(CF_3COO)_2 \cdot nH_2O$ протекает в интервале 80-200°С и экспериментальная величина потери массы на этой стадии согласуется со значениями, рассчитанными для отщепления соответствующего количества молекул воды. Согласно данным ДТГ, дегидратация $Sr(CF_3COO)_2 \cdot H_2O$ протекает в одну стадию, для которой температура максимального развития реакции (T_s) составляет 107°С. Дегидратация $Ca(CF_3COO)_2 \cdot 2H_2O$ и $Ba(CF_3COO)_2 \cdot 3H_2O$ протекает в несколько стадий (рис. 4). В области ~200-260°С образовавшиеся М(СF₃COO)₂ термостабильны, затем начинается их термораспад до соответствующих фторидов, который заканчивается при ~450°С. На этой стадии значения T_S равны 350 и 355°С для М = Са, Sr соответственно, а на кривой ДТГ для Ba(CF₃COO)₂ проявляются два эффекта с $T_{\rm s}$, равными 336 и 350°С. Экспериментальные значения суммарной потери массы для всех $M(CF_3COO)_2 \cdot nH_2O$ (M = Ca, Sr, Ba) на 1–2% ниже, рассчитанных для превращения в соответствующие MF₂, что можно объяснить неполным выгоранием углерода при проведении термического анализа в инертной атмосфере.

Результаты экспериментов, проведенных в аргоне и на воздухе, показали, что термическое поведение РЛК I—III практически не зависит от состава атмосферы (рис. 1). Это можно рассматривать как подтверждение того, что образование фторидов

Рис. 5. ИК-спектры соединений III (*a*) и IIIa (б).

происходит за счет термолиза трифторацетатной группы и практически не зависит от внешней среды.

На кривых ТГ отсутствуют явно выраженные стадии дегидратации, как это было в случае $M(CF_3COO)_2 \cdot nH_2O$ (рис. 1, 4). Основной процесс потери массы начинается выше 140°С и протекает в несколько стадий. Явно выраженная стадия отщепления МЕА отсутствует. Наиболее вероятно, что термолиз начинается с отщепления аминоспирта и этому процессу соответствует минимумы на кривых ДТГ в области 190-205°С (температура кипения MEA 176°C). Для проверки этого предположения РЛК I-III были выдержаны при 200°С на воздухе в течение 1 ч. Совокупность данных элементного и ИК спектроскопического анализов указывает на то, продукты Ia-IIIa представляют собой РЛК, но с меньшим содержанием МЕА. В качестве иллюстрации на рис. 5 приведены ИК-спектры РЛК III и IIIа, сопоставление которых показывает, что в спектре последнего значительно уменьшается интенсивность полос поглощения МЕА: ~3360-3370 см⁻¹ v(O-H), 3200-3100 см⁻¹ v(N-H), 2936, 2885 см⁻¹ v(C-H), а полоса v_{as}(COO⁻) смещается в низкочастотную область (1658 см⁻¹). При температуре выше 200°С дальнейшее отщепление МЕА сопровождается термолизом трифторацетатных групп. Так, по ТГ–ДТГ кривым для II можно достаточно надежно разделить на две стадии потери массы - от 120 до 270 и от 270 до 400°С, но экспериментальная величина потери массы на первой стадии (41%) значительно превышает рассчитанную для отщепления МЕА (22%). Выше 270°С преобладает распад трифторацетного лиганда и образование фторидов. При этом значения T_S этого процесса для I–III заметно ниже 336, 321°C (307, соответственно), чем лля $M(CF_3COO)_2 \cdot nH_2O$, т.е. превращение гидратированных трифторацетатов в РЛК с МЕА понижает термическую устойчивость трифторацетатов ЩЗЭ.

Сведений о термической устойчивости разнолигандных соединениях ЩЗЭ с этаноламином в литературе практически нет, за исключением работы по осаждению золь-гель методом пленок фторида кальция с использованием аминоспиртов, в том числе этаноламина, и полиспиртов [9]. В этой работе выполнен термический анализ геля, полученного выдерживанием при 100°С раствора ацетата кальция в трифторуксусной кислоте и MEA. Отмечено, что основной процесс превращения этого геля во фторид кальция заканчивается до 340°С, что согласуется с полученными нами данными.

В области 400-600°С на воздухе происходит очень медленный процесс потери массы, обусловленный выгоранием остаточного углерода. По данным РФА, продукты термолиза комплексов I–III в аргоне и на воздухе идентичны и представляют собой соответствующие поликристаллические фториды.

Таким образом, при взаимодействии гидратированных трифтор-ацетатов ЩЗЭ с МЕА протекают реакции замещения воды на нейтральные молекулы МЕА, приводящие к образованию разнолигандных комплексов I—III. Полученные РЛК обладают высокой растворимостью в этиловом спирте, разлагаются до соответствующих фторидов при температуре ниже 400°С. Это позволяет надеяться на их успешное использование в качестве МОП при получении пленок фторидов ЩЗЭ методами химического осаждения из растворов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lucas J., Smektala F., Adam J.L. // J. Fluor. Chem. 2002. V. 114. P. 113.
- 2. *Trnovkova V., Fedorov P.P., Furar I.* // J. Rare Earth. 2008. V. 26. № 2. 225.
- 3. Vexler M.I., Suturin S.M., Tyaginov S.E. et al. // Thin Solid Films. 2008. V. 516. P. 8740.
- 4. *Fujihara H., Ono S., Kishiki Y., et al.* // J. Fluorine Chem. 2005. V. 105. № 1. P. 65.
- 5. *Grannes J., Lozano L., Hagenmuller P.* Inorganic Solid Fluorides. Orlando: Academic Press, 1985. P. 18.
- 6. *Schwartz R.W., Schneller T., Waser R. //* C. R. Chimie. 2004. V. 7. P. 433.
- Singha M.K., Yang Y., Takoudisa C.G. // Coord. Chem. Rev. 2009. V. 253. P. 2920.
- Fujihara S., Tokumo K. // J. Fluor. Chem. 2009. V. 130. P. 1106.
- 9. Fujihara S., Tada M., Kimura T. // J. Sol-Gel Sci. Technol. 2000. V. 19. P. 311.
- Yanfei L., Xijun W., Daxiong W. et al. // Powder Technol. 2007. V. 173. P. 174.
- Quan Z., Yang D., Li C. et al. // Mater. Res. Bull. 2009. V. 44. P. 1009.
- Quan Z., Yang D., Yang P. et al. // Inorg. Chem. 2008. V. 47. № 20. P. 9509.
- 13. US Patent 5051278, 2009
- 14. *Khristov M., Peshev P., Angelova O. et al.* // Monatsh. Chem. 1998. V. 129. P. 1093.

КООРДИНАЦИОННАЯ ХИМИЯ том 36 № 11 2010

- Hara R., Cady G.H. // J. Am. Chem. Soc. 1954. V. 76. P. 4285.
- 16. Swarts B.F. // Bull. Soc. Chim. Belg. 1939. V. 48. P. 176.
- 17. Wojtczak W.A., Atanassova P., Hampden-Smith M.J., Duesler E. // Inorg. Chem. 1996. V. 35. P. 6995.
- Boyle T.J., Pratt H.D., Alam T.M. // Polyhedron. 2007. V. 26. P. 5095.
- 19. Ерин А.В., Прозоровская З.Н., Ярославцев А.Б. // Журн. неорган. химии. 1993. Т. 38. С. 618.
- 20. Глазунова Т.Ю., Болталин А.И., Федоров П.П. // Журн. неорган. химии. Т. 51. № 7. С. 983.
- Токонесущие ленты второго поколения на основе высокотемпературных сверхпроводников / Под ред. Гояла А. М.: Изд-во ЛКИ, 2009.

- 22. Zhang J., Hubert-Pfalzgraf L.G., Luneau D. // Polyhedron. 2005. V. 24. P. 1185.
- 23. Wojtczak W.A., Atanassova P., Hampden-Smith M.J. // Inorg. Chem. 1998. V. 37. P. 1781.
- 24. Dutta M., Mridha S., Basak D. // Appl. Surf. Sci. 2008. V. 254. P. 2743.
- 25. Zhang J., Hubert-Pfalzgraf L.G., Luneau D. // Inorg. Chem. Commun. 2004. V. 7. P. 979.
- 26. *Reitmaeier R.E., Suvertz V., Tartar H.V. //* J. Am. Chem. Soc. 1940. V. 62. P. 1943.
- 27. *Gharia K.S., Singh M., Mathur S., Sankhla B.S.* // Synt. React. Inorg. Met.-Org. Chem. 1980. V. 10. P. 403.