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Abstract. This paper is concerned with the completion of the proof
of the Bergman centralizer theorem using generic matrices based on
our previous quantization proof (Kanel-Belov et al. in Commun Alge-
bra 46:2123–2129, 2018). Additionally, we establish that the algebra of
generic matrices with characteristic coefficients is integrally closed.
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Introduction

Let K denote a base field and A be an (associative) K-algebra. For an element
a ∈ A, we denote by C(a;A) the set of all elements of A that commute with
a. We say that C(a;A) is the centralizer of a in A. The study of centralizers
plays an important role in investigating the structure of algebras and there
are numerous results in the literature relating to centralizers. The Bergman
centralizer theorem [2], which states that the centralizer of any non-constant
element in the free associative algebra is a polynomial algebra on a single
variable, is one of the most significant and essential conclusions. This theorem
plays a crucial role in studying algorithmic and combinatorial questions.

Nonetheless, as far as we know, no (conceptual) new proof has been
presented for this theorem since Bergman [2] nearly fifty years ago. This has
inspired us to take a fresh look at this result. We use a method of deformation
quantization motivated by Kontsevich [3] to obtain an alternative proof of the
Bergman centralizer theorem. In our previous work [1], we demonstrated that
the centralizer of a non-scalar element in K〈X〉 is a commutative subalgebra
of transcendence degree one. A detailed proof of above result can be found
in Zhang’s thesis [4].

For us, it was the most interesting part of the proof of the Bergman
centralizer theorem. However, it is reasonable to provide the entire proof.
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To complete the argument, we invoke the following result due to Cohn [5,
Prop. 2.1] which uses the Luroth theorem, i.e., any subalgebra of the algebra
K[x] is free if and only if it is integrally closed. Therefore, in this work,
we will concentrate more on the demonstration of the integral closedness of
centralizers. Our method, which differs from the conventional one in some
ways, makes use of the PI-theory. From a classical perspective, it is more or
less simple to demonstrate that the centralizer is of transcendence degree 1,
but from the perspective of our approach, it is simpler to demonstrate that
the centralizer is integrally closed. The proof of the integral closedness of the
centralizer in this work is much concise than Bergman’s initial proof (it uses
invariant theory instead). For our approach, we still require a statement from
Bergman [2] (i.e., Proposition 3.4).

Despite the profound noncommutative divisibility theorems of Cohn and
Bergman, we adopt a characteristic-free method in our demonstration, which
entails the use of generic matrices reduction and invariant theory for charac-
teristic zero by Procesi [6] and for positive characteristic due to Zubkov [7,8]
and Donkin [9,10].

We first think about the localization of the algebra of generic matrices
by transferring centralizers of non-scalar elements from the free associative
algebra case into the algebra of generic matrices.

Theorem 0.1. The algebra of generic matrices is a domain. Its localization as
a skew field coincides with the localization of the algebra of generic matrices
with traces (for positive characteristic—with forms).

The algebra of generic matrices is subsequently shown to be integrally
closed.

Theorem 0.2. The algebra of generic matrices with characteristic coefficients
is integrally closed.

Recently, Miasnikov considered an analog of the Bergman centralizer
theorem for free group algebras in his really fascinating study [11]. He estab-
lished that the centralizer of any non-scalar element of a free group algebra
over a field is the coordinate ring of a nonsingular curve.

The paper is organized as follows. Theorem 0.1 is proved in Sect. 1 after
a review of some fundamental results on generic matrices. The proof of our
main Theorem 0.2 is covered in Sect. 2 together with the integrally closedness
of the algebra of generic matrices as well as centralizers of the free associative
algebra. In Sect. 3, we complete our revised proof of the Bergman centralizer
theorem, and in Sect. 4, we discuss the rationality of degree one subfields in
the fraction field of generic matrices.

1. Algebra of Generic Matrices

A generic matrix is a matrix whose entries are distinct commutative indeter-
minates. Let n be a positive integer, s ≥ 2 be an integer and let X1, . . . , Xs be
n×n matrices with entries x

(ν)
ij which are independent central variables. Then
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the K-subalgebra of Mn(K[x(ν)
ij ]) generated by the matrices Xν is called the

algebra of generic matrices and will be denoted by K〈X1, . . . , Xs〉 or K{X}
for short. The algebra of generic matrices is a basic object in the study of
polynomial identities and invariants of n × n matrices and as we have seen
already in [1], there is a canonical homomorphism π from the free associative
algebra to the algebra of generic matrices:

π : K〈X〉 → K{X} := K〈X1, . . . , Xs〉,
and as an important property of π which we will use frequently, is as

follows:
An element f in the free associative algebra is in the kernel of the map

π, if and only if f vanishes identically on Mn(R) for every commutative
K-algebra R, and this is true if and only if it vanishes identically on Mn(K).

Note that, the kernel of the map π is a T -ideal. A T -ideal is a completely
characteristic ideal, i.e. stable under any endomorphism. Ascending chain
conditions of T -ideals and their representability are discussed in [12], and
references therein.

In other words, let h be an endomorphism of the free associative algebra
K〈X〉 (over s generators), and let Is be the T -ideal of identities for the
algebra of generic matrices of order s. Then we have h(Is) ⊆ Is for all s by
the definition of Is. Hence h induces an endomorphism hIs of K〈X〉 modulo
Is. If h is invertible, then hIs is invertible, but the converse is not true. This
fact is proven in detail by [13], and regarding the T -ideals, please refer to [14,
Definition 5.3] and the computations afterward.

Let us denote by f the image of the homomorphism π of the nonscalar
element f ∈ K〈X〉 and by Frac(K〈X〉) the skew field of fractions of the free
associative algebra K〈X〉. In our previous paper [1], we already proved that
the centralizer

C := C(f ;K〈X〉)
of f ∈ K〈X〉\K is a commutative K-subalgebra with transcendence degree
one.

We focus on the algebra of generic matrices of order n = p, where p is a
big enough prime number, throughout the entire paper. In our previous work
[1, Lemma 2.3], we showed that if n is big enough, C can be embedded into
the algebra of generic matrices of order n.

When dealing with matrices in characteristic 0, it is useful to think that
they form an algebra with a further unary operation x �→ tr(x), which is
called the trace. This can be formalized as follows [15]:

Definition 1.1. An algebra with trace is an algebra equipped with an addi-
tional trace structure, that is a linear map tr : R → R satisfying the following
properties

tr(ab) = tr(ba), a tr(b) = tr(b)a, tr(tr(a)b) = tr(a) tr(b) for all a, b ∈ R.

Our main motivation for studying traces, lies in our interest in the trace
rings of generic matrices. Let Mn be the variety of n×n-matrices X1, . . . , Xs



   85 Page 4 of 19 A. Belov-Kanel et al. MJOM

defined at the beginning of this section. (Mn)m will be the m-fold product
(over SpecK) Mn × . . . × Mn. Let G = SLn. Then we define

KT {X} := Tm,n = {f : (Mn)m → Mn | f polynomial and G-equivariant}.

Tm,n is a non-commutative ring (using the multiplication in Mn), and its
center is given by

Zm,n = {f : (Mn)m → Spec K | f polynomial and G-equivariant}.

In this case, Zm,n is the commutative and Tm,n is the non-commutative trace
ring of m generic n × n-matrices. They were first extensively studied by M.
Artin and C. Procesi. Artin and Schelter proved that the maximal ideals
of Zm,n parameterize semisimple representations of dimension n of the free
algebra 〈X1, . . . , Xs〉, and the two-sided maximal ideals of KT {X} correspond
to the simple components of such representations [16,17].

As stated earlier, let’s now demonstrate Theorem 0.1 for the algebra of
generic matrices.

Proof of Theorem 0.1. The fact that the algebra K{X} of generic matrices is
a domain and its localization is a skew field was established by Amitsur [18].
The only thing left to do is to demonstrate that the localization of K{X}
agrees with the localization of KT {X}, the algebra of generic matrices with
traces (for positive characteristic—with forms).

Consider the Hamilton–Cayley identity for n × n matrices

An − ξ1(A)An−1 + · · · + (−1)nξn(A) = 0, (1)

for ξk(A) sum of main minors of A of order k.
Let F (z, y1, . . . , yn−1;�t) be a polynomial, that is multi-linear and

skew-symmetric with respect to z, y1, . . . , yn−1 and somehow dependent to
variable �t.

Let

z = xn, Yk = {y1, . . . , yn−1} = {xn−1, . . . , 1}\{xn−k}, n − 1 ≥ k ≥ 0.

Note well that if we replace z with xn + (−1)kξk(x)xn−k in F (z, Yk;�t)
we get zero due to skew symmetry and equation (1), i.e.,

F
(
xn + (−1)kξk(x)xn−k, Yk;�t

)
= 0.

On the other hand, since {xn−k} ∪ Yk = {xn−1, . . . , x0 = 1} for the
generic matrix x are linear independent, we have F (xn−1, . . . , 1;�t) 
= 0 for
some F . We can put

F (y1, . . . , yn−1) =
∑

σ∈Sn

(−1)|σ|t0yσ(1)t1yσ(2) . . . tn−1yσ(n)tn,

which means that

ξk(x) = (−1)k+1 F (xn, Yk;�t)
F (xn−k, Yk;�t)

,

and F can be chosen such that the denominator F (xn−k, Yk;�t) stays non-zero.
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And by doing this, we were able to express the characteristic coefficient
as a fraction of ordinary polynomials, concluding the proof of
Theorem 0.1. �
Remark 1.2. 1. The ring of forms can be contained in the localization of

central polynomials by selecting F as a central polynomial in the proof
of Theorem 0.1. To accomplish this, we can consider G = h1Fh2 and
replace the variable G with a multi-linear central polynomial.

2. It is simpler to argue with representation forms ξk using trace polyno-
mials and the Razmyslov identity if char(K) = 0:

n · tr(A) ·
∑

σ∈Sn2

(−1)|σ|xσ(1)y1xσ(2)y2xσ(3) . . . xσ(n2−1)yn2−1xσ(n2)

=
∑

σ∈Sn2

(−1)|σ|Axσ(1)y1xσ(2)y2 . . . yn2−1xσ(n2)

+
∑

σ∈Sn2

(−1)|σ|xσ(1)y1Axσ(2)y2 . . . yn2−1xσ(n2)

+ . . . +
∑

σ∈Sn2

(−1)|σ|xσ(1)y1xσ(2)y2 . . . yn2−1Axσ(n2).

The discovery attributed to Amitsur [18, Theorem V.10.4] (or [4, The-
orem 3.2]), which shows that the algebra of generic matrices is a domain and
hence it has no zero divisors, is the reason why we select a prime number
rather than an arbitrarily big enough integer.

Then we have the following proposition:

Proposition 1.3. Let KT {X} be the algebra of generic matrices with traces
(forms if the characteristic is positive). Let R be its center and R be the
algebraic closure of the field of fractions of R.
(a) Every minimal polynomial of A ∈ KT {X} is irreducible over R in any

characteristic. In particular, A is diagonalizable over R.
(b) All eigenvalues λi of A ∈ KT {X} are roots of the minimal polynomial

of A, with correct multiplicities.
(c) The characteristic polynomial of A is a power of the minimal polynomial

of A.

Proof. (a) Otherwise KT {X} has zero divisors.
(b) By Cayley–Hamilton theorem, all zeros of the characteristic poly-

nomial of A are eigenvalues, then they are zeroes of the minimal polynomial
P (x) of A which is minimal over R. Hence every irreducible component over R
of Q(x) coincides with P (x), and together with Theorem 0.1, the statements
(b) and (c) follow. �

A significant open problem that is well-known in the community can be
stated as follows:

Problem 1.4. Whether for big enough n, every non-scalar element in the al-
gebra of generic matrices has a minimal polynomial that always coincide with
its characteristic polynomial.
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This is an important open direction, on which for small n, the Galois
group of extension quotient field of the center of algebra of generic matrices
by eigenvalues of a non-scalar element of this algebra might not be the full
symmetry group. However, it still is unknown for big enough n. In this regard,
some related problems have been discoursed in [19].

From Proposition 1.3 (c), for n = p, a large enough prime, we can obtain
the following corollary.

Corollary 1.5. Let K{X} be the algebra of generic matrices of a large enough
prime order n := p. Assume A is a non-scalar element in K{X}, then the
minimal polynomial of A coincides with its characteristic polynomial.

Proof. Let m(A) and c(A) be the minimal and the characteristic polynomial
of A, respectively. Note that deg c(A) = n, and c(A) = (m(A))(k). Because
A is not scalar, we have deg m(A) > 1 and since n is prime and k divides n,
hence we have k = 1. �

The following proposition holds:

Proposition 1.6. Every generic matrix B with same eigenvectors (defined
over the tensor product of algebraic closure of center) as a diagonalizable
matrix A commutes with A.

Proof. Consider A,B ∈ Mn×n(K). If B has the same set of eigenvectors as a
diagonalizable matrix, then B has n linearly independent eigenvectors. Since
A and B are n×n matrices with n eigenvectors, they both are diagonalizable
and therefore A = Q−1DAQ and B = P−1DBP, where Q and P are matrices
whose columns are eigenvectors of A and B associated with the eigenvalues
listed in the diagonal matrices DA and DB respectively. But, according to
the hypothesis, A and B have the same eigenvectors and this immediately
will imply that P = Q =: S. Therefore A = S−1DAS and B = S−1DBS, so
AB = S−1DASS−1DBS = S−1DADBS and in a same way we have BA =
S−1DBDAS and since DA and DB are diagonal matrices that commute,
hence so do A and B. �

Proposition 1.7. Let n be a prime number and A be a non-scalar element
of the algebra of generic matrices, then all eigenvalues of A are pairwise
different.

Proof. The result will directly follow from Proposition 1.3 and Corollary 1.5.
�

Proposition 1.7 implies the following results.

Corollary 1.8. The set of all generic matrices commuting with A consists
of matrices which are all diagonalizable with A simultaneously in the same
eigenvector basis as in A.

If A is a non-scalar matrix, then we have the following result:

Corollary 1.9. A is a non-scalar element of the algebra of generic matrices
K{X}, then every eigenvalue of A is transcendental over K.
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Proof. We may assume that the ground field is algebraically closed. If there
some eigenvalues are algebraic over K, then the minimal polynomial for A
will be decomposable, which contradicts Proposition 1.3. �

Consider a set X of generators a1, . . . , as homogeneous of degree 1 of
algebra of generic matrices. By degree deg(X) of an element of X generic
matrices we mean the degree of its highest component. The following lemma
is required.

Lemma 1.10. Let A and B be generic matrices and P (B) = A for some
polynomial P . Then deg(B) ≤ deg(A). Moreover, deg(A) = deg(P ) · deg(B).

Proof. Let n = deg(P ). The highest term An is an n-th power of highest
term of B, is non zero and has degree n · deg(A). �

We require another crucial theorem by Amitsur and Levitzki [20].

Theorem 1.11. (Amitsur–Levitzki theorem) Matrix rings of order n are poly-
nomial identity rings in a case that the smallest identity they satisfy has a
degree exactly equal to 2n.

2. Centralizers are Integrally Closed

We attempted to provide a succinct definition of C(a;A), the centralizer of a
in A, in the introduction. Let’s begin this section by giving the topic a rather
in-depth definition. For a ring R and a subset X ⊆ R, we denote by C(X;R)
the set of all elements of R which commute with every element of X. We say
that C(X;R) is the centralizer of X in R, i.e.,

C(X;R) = {r ∈ R : rx = xr,∀x ∈ X}.

If X = {a}, then we simply write C(a;R) instead of C({a};R). Clearly
C(X;R) is a subring of R and it contains the center Z(R). It is also clear
that C(X;R) = R if and only if X ⊆ Z(R). We are only interested in C(a;R)
where a /∈ Z(R).

2.1. Invariant Theory of Generic Matrices

In this subsection, we review some essential facts from the invariant theory
of generic matrices.

Consider the algebra K{X} of s-generated generic matrices of order
n over the ground field K. Let a� = (a�

ij), 1 ≤ i, j ≤ n, 1 ≤ � ≤ s be its
generators. Let R = K[a�

ij ] be the ring of entries coefficients. Consider an
action of matrices Mn(K) on matrices in R by conjugation, namely

ϕM : B �→ MBM−1.

It is well-known (cf. [6,8,21]) that the invariant function on this matrix can be
expressed as a polynomial over traces tr(ai1 . . . ais). Any invariant on K{X}
is a polynomial of tr(ai1 . . . ain). Note that the conjugation on M induces an
automorphism ϕM of the ring R. Namely, M(aij)�M−1 = (a′

ij
�), and ϕM (B)

of R induces automorphism on Mn(R). And for any x ∈ K{X}, we have

ϕM (x) = MxM−1 = AdM (x).
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Consider x = Ad−1
M ϕM (x). Then any element of the algebra of generic ma-

trices is invariant under ϕM .
There is a well-known fact that we can formulate as follows:

Theorem 2.1. The algebra of generic matrices with trace is an algebra of
concomitants, i.e. subalgebra of Mn(R) which is invariant under the action
ϕM .

This theorem was first proved by Procesi [6] for the ground field K of
characteristic zero. If K is a field of positive characteristics, we have to use
not only traces but also characteristic polynomials and their linearization (cf.
[9,10]). Relations between these invariants were discovered by Procesi [6,21]
for characteristic zero and Zubkov [7,8] for characteristic p. de Concini and
Procesi also generalized the characteristic-free approach to invariant theory
[22]. For further information and background on this topic, we recommend
referencing [23].

Now let us denote by KT {X} the algebra of generic matrices with traces
(characteristic coefficients of forms for positive characteristics).

Proposition 2.2. Let n be a prime number, then the centralizer of A ∈ KT {X}
is integrally closed in KT {X}.

Proof. Due to the results of the next Sect. 2.2, the algebra of generic matrices
with trace (with forms in positive characteristic case) is integrally closed,
and therefore it is only necessary to prove that the rational closure of the
centralizer is within the algebra of generic matrices with trace. But in a
domain, the fraction of two elements commuting with x also commutes with
x and hence we are done. �

2.2. Algebra of Generic Matrices with Traces (Forms) is Integrally Closed

Our main goal in this subsection is to prove Theorem 0.2. Recall the following
result:

Theorem. Let K be a field of characteristic zero. Then the algebra of generic
matrices with trace over K is integrally closed and moreover, if char(K) > 0
then the algebra of generic matrices with forms (i.e. characteristic coefficients)
over K is integrally closed.

2.2.1. Realization of the Algebra of Generic Matrices as a Generic Algebra
over a Skew Field. Let K be an algebraically closed field. Consider the ring
K{X} of n × n generic matrices over K, with s number of generators. Let
Z be its center and F the field of fractions of Z. Then Q = F ⊗ K{X} is a
skew field, n2-dimensional over F and it is PI-equivalent to K{X}. One can
naturally define traces (forms) on Q.

Now we consider the algebra of generic elements of Q. It is isomorphic
to the algebra of generic matrices over F . Naturally, it is also possible to
define the algebra of generic elements of Q with traces (forms).
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The construction of the algebra of generic elements proceeds analogously
to the construction of generic matrices. Let e1, . . . , en2 be an F -basis of Q.
Consider the set of variables x

(k)
i , i = 1, . . . , n2, k = 1, . . . , s. Let

Ak =
n2
∑

i=1

eix
(k)
i ,

and consider A = F [A1, . . . , As]; this is the algebra of generic elements over
F . One can define an algebra of generic elements of any finitely dimensional
algebra B (not necessary associative) over an infinite field.1 Such algebra is
always relatively free. Two generic algebras for B1 and B2 are isomorphic
if and only if B1 and B2 are PI-equivalent. The algebra of generic matrices
of order n with s generators over F is therefore naturally isomorphic to our
generic elements algebra of a skew field Q.

2.2.2. Algebra of Generic Elements of a Skew Field is Integrally Closed.
We seek to establish the integral closure property of the algebra of generic
elements of a skew field in this subsection.

Consider the algebra Q ⊗ F (y1, . . . , ym), which is a skew field. Any
element r of this skew field can be represented as

r =
n2
∑

i=1

eiPi/Qi,

where Pi, Qi do not have common divisors. Let R be the least common multi-
ple of Qi. We call R a denominator of r. We continue with some observations:

Lemma 2.3. (a) Let D be a commutative domain over F . Then Q ⊗F D is
a non-commutative domain, its skew field localization is isomorphic to
Q ⊗F D, where D is a field of fractions of D.

(b) Let D be a commutative domain over F and I � D a prime ideal. Then
Q ⊗F D/(I · Q ⊗F D) � Q ⊗F D/I is a domain.

In what follows, we will work with generic elements of the skew field Q
instead of generic matrices.

Lemma 2.4. If R is a denominator of r, then Rn is a denominator of rn.

Proof. It is enough to treat the case where R is a power of an irreducible
polynomial. Consider the element R · r. It belongs to Q ⊗ F [y1, . . . , ym], it is
not divisible by R̄, the irreducible component of R (because otherwise R is
not a minimal denominator of r).

Consider the integral domain F [y1, . . . , ym]/〈R̄〉 (see Lemma 2.3). Sup-
pose that its localization is a skew field G. Now consider Q⊗F [y1, . . . , ym]/〈R̄〉
⊂ Q ⊗ G. Because Q ⊗ G is a skew field, hence it does not contain any nilpo-
tent element and therefore (R · r)n is not divisible by R̄ and the statement
of the lemma follows. �
Corollary 2.5. The algebra Q ⊗F F [z1, . . . , zm] of polynomials over Q is in-
tegrally closed.

1Constructions of generic algebras over a finite field is discussed in [24].
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Proof. If A belongs to the algebra of proper rational functions over Q, then
it has a non-trivial denominator R. Then by the previous lemma, An has the
denominator Rn. Every power of A also has a non-trivial denominator and
can not be a polynomial over Q. Moreover, consider P (A) = An+S(A)(n > 1)
be a polynomial of A with deg(S) = k < n. Denominator of any component
of s(A) is Rk, with k < n. Hence, P (A) has the same non-trivial denominator
Rn as An by Lemma 2.4. Then P (A) can not be a polynomial over Q. �

Remark 2.6. In general, the same statement as in Corollary 2.5 is not true
for matrices. Consider the partial case when P (A) = An, because if An (the
nth power of a matrix A with det(A) 
= 0 over rational functions) is a matrix
over the polynomial ring, then it does not imply that A is a matrix with
polynomial entries. That is why we represent the algebra of generic matrices
generated by generic elements of a skew field.

Let P (A) be a non-constant polynomial of A, we proved that if P (A)
is a polynomial matrix over Q and A ∈ Q ⊗ F (y1, . . . , ym) then A ∈ Q ⊗
F [y1, . . . , ym] and this was the reason to consider “generic Q-elements”.

2.2.3. Trace Algebras. In this subsection, we will use traces. A trace algebra
is a generalized monoid (a set with a ternary operation that satisfies certain
generalized associativity and identity laws). Every trace algebra induces in
a very natural way a mathematical object which exhibits the behavior of
the interrelations familiar from the theory of linear spaces (with the notable
exception of “Fubini’s theorem”). The induced object is induced in a well-
behaved manner: its structure is determined by the structure of the trace
algebra, and by nothing else. Conversely, if the trace algebra is well-behaved,
then it is uniquely determined by its induced object. This means that when
everything is well behaved, then our abstract “linear spaces” are the same
thing as trace algebras. For more information regarding the trace algebras,
we refer the interested reader to [25].

Remark 2.7. Note that tr(ei) ∈ F and tr(
∑

xiei) =
∑

xi tr(ei).

And we have the following results.

Lemma 2.8. Let X = e1x1 + e2x2 + · · · + en2xn2 be a generic Q-element,
suppose {y1, . . . , ym} is a set of variables disjoint with x1, . . . , xn2 . Let S ∈
Q(y1, . . . , ym), tr(XS) ∈ Q[x1, . . . , xn2 , y1, . . . , ym]. Then S ∈ Q[y1, . . . , ym].

Proof. We have to prove that if S has a non-trivial denominator, then tr(XS)
also has a non-trivial denominator. Taking the tensor product with the al-
gebraic closure F cl of F we come to the matrix algebra Mn(F cl) instead
of Q. Because tr(X1SX2) = tr(X2X1S) and we may consider an expression
tr(X1SX2) instead of tr(XS). It is enough to consider one proper specializa-
tion of X1,X2 such that tr(X2SX1) has a non-trivial denominator.

Indeed, if S has a non-trivial denominator, then one of its entries, Sij ,
also has a nontrivial denominator. Then we can specialize X1 to E1i and X2

to Ej1. Then tr(X2SX1) = Sij and will have the same denominator, which
is not trivial. �



MJOM Centralizers in Free Associative Algebras and Generic Matrices Page 11 of 19    85 

Lemma 2.9. Let Xs =
∑n2

i=1 eiyi be a generic matrix. Let B ∈ Q⊗F [x(k)
i ] for

k = 1, . . . , s−1 and let {xi}, {yj} be sets of variables with empty intersection.
If tr(XB) is the trace of a generic matrix with trace, then B is a generic
matrix with trace.

Proof. To prove this result we use the standard method from PI-theory.
Note that if variables participating in a generic matrix X are different

from y1, . . . , ym then for B ∈ Mn(k[y1, . . . , ym]) the mapping B → tr(XB)
is injective and hence if tr(XB) = tr(XB1) for some generic matrix B1 ∈
Mn(k[y1, . . . , ym]) then B = B1.

Let tr(XB) be a trace polynomial, it has degree 1 with respect to X. It
is an element of the algebra of generic matrices with trace and it is a sum of
monomials of the form

tr(XB1B2 · · · Bl) tr(M1) tr(M2) · · · tr(Ml).

Now if we replace each such monomial by B1B2 · · · Bl tr(M1) tr(M2) · · · tr(Ml)
we will get

∑
B1B2 · · · Bl tr(M1) tr(M2) · · · tr(Ml) = B. Therefore B belongs

to the algebra of generic matrices with trace and hence we are done. �

Remark 2.10. We need to emphasize that the constructions related to trace
monomials and the special variable X are rather common in PI-theory (see
[12,26,27] for example).

2.2.4. The Proof. Now we are ready to prove the main result of this section
on the integral closedness of the algebra of generic matrices with traces (for
the positive characteristic case—with characteristic coefficients).

We first embed the algebra of generic matrices with traces into Q[y1,
. . . , ym] (for y1, . . . , ym the entries coefficients) which is integrally closed
(Corollary 2.5) and hence our integral closure lies in Q[y1, . . . , ym].

Let Y be in the integral closure. Let X be a new generic matrix variable,
not participating in Y m. Then tr(XY ) belongs to the localization of traces
and therefore to the field of invariants. On the other hand, it belongs to
F [x1, . . . , xn2 , y1, . . . , ym].

Because of Procesi’s theorem (resp. Donkin’s theorem in positive char-
acteristics), it belongs to the trace algebra (resp. characteristic coefficients
generic algebra for positive characteristics case). Therefore tr(XY ) is a char-
acteristic coefficients polynomial.

According to Lemma 2.9, an element of the integral closure Y belongs to
the algebra of generic matrices with trace (forms or characteristic coefficients
in positive characteristics), which is what we need.

2.3. Proof of Integrally Closedness of Centralizers

In this subsection, we will prove that the centralizer C is integrally closed.
First, we will try to discuss the problem in the general case, and then we will
proceed with the proof.

As before, let K be our ground field. Denote by K〈〈X〉〉 the K-algebra
of formal power series with X = {x1, . . . , xn}. Cohn [5] proved that if f ∈
K〈〈X〉〉 is not a constant, then C(f ;K〈〈X〉〉) = K[[�]], for some power series
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�, where K[[�]] stands for the ring of formal power series in �. This result is
known as Cohn’s centralizer theorem.

By Cohn’s centralizer theorem, the centralizer of every non-constant
element in K〈〈X〉〉 is commutative, and since K〈X〉 is a K-subalgebra of
K〈〈X〉〉, the centralizer of a non-constant element of K〈X〉 will be commu-
tative as well.

We will give proof of the following Theorem using the generic matrices
technique based on our previous work [1].

Theorem 2.11. The centralizer C of a non-trivial element f in the free asso-
ciative algebra is integrally closed.

Let g, P,Q ∈ C := C(f ;K〈X〉), and suppose g = P/Q, then there exists
h ∈ C, such that R(h) = g. This means that the centralizer C is integrally
closed. Next, we will establish a relationship between the centralizer and the
algebra of generic matrices K{X} by the local isomorphism.

Consider the homomorphism π from the free associative algebra K〈X〉
to KT {X}, the algebra of generic matrices with traces. Let us denote by ḡ
the image π(g). Then we have the following proposition.

Proposition 2.12. Consider the epimorphism π : K〈X〉 → KT {X}. Let the
order of matrices be a prime number p � 0. Consider g = π(g), P = π(P )
and Q = π(Q). Then there exists h ∈ KT {X} such that we have the following
assertions:
(1) R(h̄) = g,

(2) h̄ = P
Q

,

(3) h̄ ∈ C, where C = π(C).

Proof. Statements (1) and (2) will directly follow from Proposition 2.2 which
indicates that the algebra of generic matrices with traces is integrally closed.
Hence, we just need to prove the third statement. Note that all eigenvalues
of ḡ are pairwise distinct due to Proposition 1.7. The same also holds for f̄ .
Therefore f̄ and, ḡ are diagonalizable and h̄ can be diagonalized in the same
eigenvectors basis and hence by Proposition 1.6 it follows that h̄ commutes
with f̄ , meaning that h̄ ∈ C. �

Now we need to prove that h̄ in fact belongs to the algebra of generic
matrices without a trace. We use the local isomorphism to dispose of traces.
One may refer to [28] for more details concerning the local isomorphism.

Definition 2.13. (Local isomorphism) Let A be an algebra with generators
a1, . . . , as and homogeneous with respect to this set of generators, and let A

′

be an algebra with generators a′
1, . . . , a

′
s homogeneous with respect to this set

of generators. We say that A and A
′ are locally L-isomorphic if there exists

a linear map ϕ : ai → a′
i on the space of monomials of degree ≤ 2L, and in

this case for any two elements b1, b2 ∈ A with highest term of degree ≤ L,
we have

bi =
∑

j

Mij(a1, . . . , as) and b′
i =

∑

j

Mij(a′
1, . . . , a

′
s),
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where Mij are monomials, and for b = b1 · b2, b′ = b′
1 · b′

2, we have ϕ(b) = b′.

For to continue we need the following lemmas and propositions:

Lemma 2.14. (Local isomorphism lemma) For any L, if s is a large enough
prime, then the algebra of generic upper triangular matrices Us is locally L-
isomorphic to the free associative algebra. Also the reduction of the algebra
of generic matrices with traces of degree n provides an isomorphism up to
degree ≤ 2s.

It is important to note a well-known and extremely helpful fact here,
which we will put as a proposition.

Proposition 2.15. The trace of every element in Us of any characteristic is
zero.

We also substantiated the following results in the aforementioned pro-
cedure:

Proposition 2.16. If n > n(L), then the algebra of generic matrices with and
without traces are locally isomorphic. Hence, the algebra of generic matrices
without traces is L-locally integrally closed.

Lemma 2.17. Consider the projection π from the algebra of generic matrices
with traces to Us, sending all traces to zero. Then we have

π(R(h)) = π(g).

Now we are ready to prove Theorem 2.11, which is our main result in
this section:

Proof of Theorem 2.11. Let p be a big enough prime number and because
space KT {X} of degree ≤ p, is isomorphic to the space of free associative
algebras, hence can set

p ≥ 2(deg(f) + deg(g) + deg(P ) + deg(Q)).

Note that in this case up to isomorphism, we have that h corresponds to h̄ and
due to local isomorphism, R(h) = g and h = P/Q, meaning that hQ = P .
Also, we have h commutes with f , which means that h ∈ C. �

3. Proof of the Bergman Centralizer Theorem

We can infer the following proposition from the previous two sections:

Proposition 3.1. Let p be a large enough prime number, and K{X} the alge-
bra of generic matrices of order p. For any A ∈ K{X}, the centralizer of A
is integrally closed in K{X} over the center of K{X}.

In our previous paper [1], we established that the centralizer in the
algebra of generic matrices is a commutative ring of transcendence degree
one. According to Proposition 3.1, C(A) is integrally closed in K{X} and if
p is big enough, then K{X} is L-locally integrally closed.
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Let X be a totally ordered set and W be the free monoid on the set
X with the empty word representing 1. Let W be the set of all right infinite
words in X (i.e. infinite sequences of elements of X). Given u ∈ W − {1}, let
u∞ denote by the word obtained by repeating u infinitely: uuu . . . . Let W
be ordered lexicographically.

Next we need the following extra fact about “infinite words” from
Bergman [2].

Lemma 3.2. (Bergman) Let u, v ∈ W\{1}. If u∞ > v∞, then we have u∞ >
(uv)∞ > (vu)∞ > v∞.

Proof. It suffices to show that the whole inequality is implied by (uv)∞ >
(vu)∞. Suppose (uv)∞ > (vu)∞, then we have the following

(vu)∞ = v(uv)∞ > v(vu)∞ = v2(uv)∞ > v2(vu)∞ = · · · = v∞.

Similarly, we can obtain (uv)∞ < u∞. �
It is easy to see that Lemma 3.2 still works when we replace “>” with

“=” or “<”.

Remark 3.3. Similar constructions are used in [29] for Burnside type prob-
lems and the Shirshov height theorem.

Now let R be the semigroup algebra on W over field K, meaning that
R = K〈X〉 is the free associative algebra. Consider z ∈ W be an infinite
period word, and we denote by R(z) the K-subspace of R generated by words
u such that u = 1 or u∞ ≤ z. Let I(z) be the K-subspace spanned by words u
such that u 
= 1 and u∞ < z. Using Lemma 3.2, we can conclude that R(z) is
a subring of R and Iz is a two-sided ideal in R(z) and it follows that R(z)/I(z)
is isomorphic to the polynomial ring K[u].

Proposition 3.4. (Bergman) For C 
= K (a finitely generated subalgebra of
K〈X〉) there is a homomorphism f of C into the polynomial algebra over K
in one variable, such that f(C) 
= K.

Proof (Bergman). For a given totally order on X, let G be a finite set of
generators for C and let z be the maximum over all monomials u 
= 1 with
nonzero coefficient in elements of G of u∞. Then we have G ⊆ R(z) and hence
C ⊆ R(z), and the quotient map f : R(z) → R(z)/I(z) ∼= K[v] is nontrivial on
C. �
Remark 3.5. Because f(C) 
= K and C does not have zero-divisors and is a
commutative ring of transcendental degree one [1], f is a monomorphism.

Now we are ready to finish the proof of Bergman’s centralizer theorem.
Consider the homomorphism from Proposition 3.4. Because C is a cen-

tralizer of an element in K〈X〉\K, it has transcendence degree 1. Consider
the homomorphism ρ which sends C to the ring of polynomials. The homo-
morphism has kernel zero, otherwise ρ(C) will have a smaller transcendence
degree. Note that C is integrally closed and finitely generated, therefore it
can be embedded into the polynomial ring in one indeterminate. Since C is
integrally closed, it is isomorphic to the polynomial ring in one indeterminate.
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Consider the set of system of C�, finitely generated subalgebras � gen-
erators of the centralizer algebra C, then C = ∪�C�. Let C� be the integral
closure of C�. Because C� is a one dimensional domain, which can be embed-
ded to the ring of polynomial with one variable, then C� the integral closure
of those images is isomorphic to the ring of polynomial, i.e. C� = K[z�],
where z� belongs to the integral closure of C�. Consider sequence of z�. We
have K[z�] ⊆ K[z�+1] ⊆ · · · . If K[z�] � K[z�+1], then the degree of z� is
strictly less than the degree of z�+1, otherwise K[z�] = K[z�+1] and we can
put z� = z�+1. Hence this sequence stabilizes for some element x and it shows
that K[z] is the needed centralizer.

4. On the Rationality of Degree One Subfields in the Skew
Field of Fractions of Generic Matrices

The following open problem will be discussed in this final section along with
some potential solutions. Unless otherwise stated, we still use the same no-
tations from the previous section.

Problem 4.1. Consider the algebra of generic matrices K{X} of order s.
Consider its skew field of fractions, Frac(K{X}) [30], and let K be a sub-
field of Frac(K{X}) of transcendence degree one over the base field K. Now
the question is whether we can say K is isomorphic to the field of rational
functions over K. In other words, do we have K ∼= K(t)?

Let K{X} be the algebra of generic matrices of a large enough prime
order s := p. Let Λ be the diagonal generic matrix Λ = diag (λ1, . . . , λs) in
K{X}, where the transcendence degree satisfies Trdeg K[λi] = 1. Now let N
be another generic matrix, whose coefficients are algebraically independent
from λ1, . . . , λs. This means that if R is a ring of all coefficients of N , with
Trdeg(R) = s2, then

Trdeg R[λ1, . . . , λs] = s2 + Trdeg K[λ1, . . . , λs].

Proposition 4.2. Let us consider the generic matrices f and g.

(a) Let K[fij ] be a commutative ring, and I = 〈f1i〉 � K[fij ], for (i > 1),
be an ideal of K[fij ]. Then we have K[f11] ∩ I = 0.

(b) Let K[fij , gij ] be a commutative ring, and J = 〈f1j , g1j〉 � K[fij , gij ]
when (i, j > 1). If f and g are algebraic dependent on e1, namely there
exists a polynomial P with P (f11, g11) = 0, then K[f11, g11] ∩ J = 0.

Corollary 4.3. Let A be an algebra of generic matrices generated by a1, . . . , as,
as+1. Let f ∈ K[a1, . . . , as] and ϕ = as+1fa−1

s+1. Let I = 〈ϕ1i〉 � K[a1, . . . ,
as+1]. Then K[ϕ11] ∩ I = 0.

Proof. Note that we have f = τΛτ−1 for some τ and a diagonal matrix Λ by
Proposition 4.2. Then ϕ = (as+1τ)Λ(as+1τ)−1 and we can treat (as+1τ) as
a generic matrix. �
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Theorem 4.4. Let C := C(f ;K〈X〉) be the centralizer ring of f ∈ K〈X〉\K

and let C be the reduction of generic matrices, and C be the reduction with
respect to the first eigenvalue action. Then we have C ∼= C.

Proof. Recall that we already have shown C ∼= C satisfies [1]. If we have
P (g1, g2) = 0, then clearly P (λ1(g1), λ2(g2)) = 0 in the reduction on the first
eigenvalue action. Suppose P (g1, g2) = 0. Then P (g1, g2) is an element of the
ring of generic matrices with at least one zero eigenvalues and because the
minimal polynomial is irreducible, and hence implies that P (g1, g2) = 0. This
means that any reduction with λ1 satisfies the equation completely, and it is
exactly what we were looking for! �

Consider C as before and for any g = (gij) ∈ C, let us investigate
g11. As before suppose there is a polynomial P with coefficients in K, such
that P (f, g) = 0. By Proposition 4.2, we make the intersection of ideals
J = 〈f1j , g1j〉 for (j > 1) and even stronger, meaning that K[f11, g11]∩J = 0
and from Theorem 4.4 we can retrieve the following proposition.

Proposition 4.5.

K[f11, g11] ∼= K[f, g] mod J.

Proof. Consider matrices f , g in mod J respectively with f and g as follows:

f =

⎛

⎜
⎜
⎝

λ1 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠ , g =

⎛

⎜
⎜
⎝

λ2 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠ .

Then for any P (f, g) mod J , we have

f =

⎛

⎜
⎜
⎝

P (λ1, λ2) 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠

�

Now, let us propose another approach as follows. Consider K(f, g) as
before and let us extend the algebra of generic matrices by a new matrix T ,
independent from the previous ones. Consider conjugation of P (f, g) with T

by TP (f, g)T−1, and let f̃ = TfT−1 and g̃ = TgT−1. By Corollary 4.3, we
have

K[f11, g11] ∩ J = 0,

which means that

P (f11, g11) = 0 mod J,

for f11 and g11 polynomials over the commutative ring generated by all entries
of K[f, g] and T . Then Frac(K(f, g)) can be embedded into the fractional field
of the ring of polynomials and according to Lüroth’s Theorem, Frac(K(f, g))
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(hence Frac(C)) will be isomorphic to the field of rational functions in one
variable.

Note well that this will not guarantee the rationality of our field, and
there are counterexamples in this situation. However, this approach seems to
be useful for the leading term analysis.
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