Generalized Chaplygin problem
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The following two-dimensional optimal control problem is studied:
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Here g(a) = ($55) is a unit vector, A = (° §) is the (2 x 2)-matrix,
A* is the transposed matrix A. The collection of known parameters T,
U, a, ap € [0,27) is given. The control domain U is a plane smooth
convex compact set, 0 € intU; support function c(y) = gleaéc(u,w) of

the set U and its distant functions play the important technical role for
problem (1) solution. It is assumed that c(v)) > 0 Vi # 0, gradient ¢'(¢))
and Hessian ¢” (1) are defined and continuous for all ¢ # 0, rank ¢’ (¢p) = 1
for ¢ # 0, [2]. Geometric sense of the cost L is doubled area of the plane
figure, which is limited by the closed curve z = z(¢), 0 < ¢t < T. In
the original Chaplygin’s problem [1] about maximal flyby area (single
anticlockwise bypass) the control domain U is a circle with translated
center, 0 € int U.

The Pontryagin maximum principle is used for solving the problem (1).
In the study of the maximum principle boundary value problem
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the theorem about support function’s gradient and the vector first inte-
gral A*x—1) = const are used. The important role belongs to the following
two-dimensional Hamiltonian system

p=A"@p), pl_,=p" pp’cR\{0}



analysis. Solution of this system admits certain description in an analy-
tical form.

In the formulation of final result the polar set U of the convex compact
set U is involved. Optimal motion is running along the curve obtained
from the polar curve U as result of some linear transformations depend-
ing on the parameters of the problem (1).

Support function’s technique is useful in construction of numerical
algorithms for optimal solution search and also in theoretical investiga-
tions [3-10]. In conclusion it is possible to draw attention to short publi-
cation [4] concerning Chaplygin’s problem.
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