
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lanl20

Analytical Letters

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lanl20

Determination of the Fluoroquinolones
Levofloxacin and Ciprofloxacin by a Piezoelectric
Immunosensor Modified with Multiwalled Carbon
Nanotubes (MWCNTs)

Evgenia I. Shinko, Olga V. Farafonova, Il'ja A. Shanin, Sergei A. Eremin &
Tatyana N. Ermolaeva

To cite this article: Evgenia I. Shinko, Olga V. Farafonova, Il'ja A. Shanin, Sergei A. Eremin
& Tatyana N. Ermolaeva (2022) Determination of the Fluoroquinolones Levofloxacin and
Ciprofloxacin by a Piezoelectric Immunosensor Modified with Multiwalled Carbon Nanotubes
(MWCNTs), Analytical Letters, 55:7, 1164-1177, DOI: 10.1080/00032719.2021.1991364

To link to this article:  https://doi.org/10.1080/00032719.2021.1991364

View supplementary material 

Published online: 02 Nov 2021.

Submit your article to this journal 

Article views: 82

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lanl20
https://www.tandfonline.com/loi/lanl20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00032719.2021.1991364
https://doi.org/10.1080/00032719.2021.1991364
https://www.tandfonline.com/doi/suppl/10.1080/00032719.2021.1991364
https://www.tandfonline.com/doi/suppl/10.1080/00032719.2021.1991364
https://www.tandfonline.com/action/authorSubmission?journalCode=lanl20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lanl20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00032719.2021.1991364
https://www.tandfonline.com/doi/mlt/10.1080/00032719.2021.1991364
http://crossmark.crossref.org/dialog/?doi=10.1080/00032719.2021.1991364&domain=pdf&date_stamp=2021-11-02
http://crossmark.crossref.org/dialog/?doi=10.1080/00032719.2021.1991364&domain=pdf&date_stamp=2021-11-02


BIOSENSORS

Determination of the Fluoroquinolones Levofloxacin and
Ciprofloxacin by a Piezoelectric Immunosensor Modified
with Multiwalled Carbon Nanotubes (MWCNTs)

Evgenia I. Shinkoa , Olga V. Farafonovaa , Il’ja A. Shaninb, Sergei A. Ereminb,
and Tatyana N. Ermolaevaa

aDepartment of Chemistry, Lipetsk State Technical University, Lipetsk, Russia; bDepartment of chemical
enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia

ABSTRACT
Methods for the high-sensitivity determination of fluoroquinolones
using a piezoelectric immunosensor based on multi-walled carbon
nanotubes (MWCNTs) are developed. The use of MWCNTs in the for-
mation of a stable piezoelectric sensor detection layer increases the
active specific surface area which is necessary for receptor molecule
binding. The concentrations of hapten-protein conjugates (35/65 ser-
ial concentration) and polyclonal antibodies are determined in the
direct (15/85 for levofloxacin, 18/82 for ciprofloxacin) and in the
competitive immunoassay formats (14/86 for levofloxacin, 10/90 for
ciprofloxacin). Conditions for the analysis in the flow-injection mode
were studied. The carrier flow rate was 30 and 50ml/min depending
on the detection layer formation method. The characteristics of
MWCNTs-based piezoelectric immunosensors were characterized for
the determination of fluoroquinolones in the static and in the flow-
injection modes. The direct and competitive immunoassay formats
(detection limit, linear range of target concentrations, reproducibility)
were determined. The detection limits were 9 and 8ng/ml for levo-
floxacin and ciprofloxacin in the competitive format and 25 and
21ng/ml in the direct assay. The piezoelectric immunosensors were
employed for the analysis of milk.
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Introduction

Fluoroquinolones (FQs) are a large group of highly effective antimicrobial drugs that
are widely used in veterinary practice (Wang et al. 2021; Dinh et al. 2020; Egunova
et al. 2020; Cheng et al. 2020). Inside the body, FQs are poorly metabolized and accu-
mulate (Cao et al. 2020; Rusch et al. 2019; Feng et al. 2019), which is why their residual
contents are found in animal products such as milk and meat. The consumption of
these products results both in direct toxic effects of antibiotics on the human body and
in the development of resistance to these substances (Sazykin et al. 2021; Yu et al.
2020). The World Health Organization (WHO) lists antibiotic resistance among the
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most important problems of modern medicine, since this resistance is spreading at an
incredible rate thus posing a threat to human health (Skepper et al. 2020; Pascucci et al.
2021; Karadag et al. 2021; Yu et al. 2021; Nji et al. 2021; Yin et al. 2021).
The widespread use of these drugs necessitates the development of sensitive, rapid and

easy-to-perform methods for determining the residual content of fluoroquinolone antibiot-
ics. The most commonly used method today is HPLC (Asu et al. 2021; Hu et al. 2021; Pang
et al. 2019; Li et al. 2019; Wu et al. 2019; Moudgil et al. 2019). A fluorimetric detector allows
the determination fluoroquinolone from 0.14 to 1.1 ng/l (Pang et al. 2019), while the level of
a mass spectrometric detector is 0.0014 to 0.023mg/l (Li et al. 2021). However, these meth-
ods require expensive equipment and highly qualified personnel, as well as rather compli-
cated sample preparation, which limits their use for routine analysis.
An alternative to chromatographic methods in the determination of fluoroquinolone

is immunochemical methods with their relative ease of implementation and high select-
ivity. Among the immunochemical methods, it is important to note the enzyme-linked
immunosorbent assay (ELISA) (Acaroz et al. 2020) and the fluorescence polarization
immunoassay (FPIA) (El Kojok et al. 2020; Shen et al. 2019).
Considerable attention is paid to the development of immunosensors to determine

fluoroquinolones with minimal sample preparation. Most common in this respect are
electrochemical immunosensors (Cardoso et al. 2021; Rudnicki et al. 2020) that require
the use of special labels (e.g., enzyme labels). Label-free impedimetric immunosensors
for the determination of ciprofloxacin at the pg/ml level are also described (Lamarca
et al. 2020). In addition, to perform highly sensitive determination of fluoroquinolones
without any special labels, it is suggested to use sensors based on surface plasmon res-
onance (Pan et al. 2017; Sari et al. 2018).
Piezoelectric immunosensors are rarely used in determining fluoroquinolones. In a piezo-

electric sensor, the analytical signal is the change in the frequency of its oscillations during
the formation of the antigen/antibody affinity complex (Yun et al. 2019). In terms of sensi-
tivity, piezoelectric sensors are comparable to and in some cases even surpass widely used
optical, spectrophotometric, fluorescent, and electrochemical sensors (Medyantseva et al.
2021; Cervera-Chiner et al. 2020). Therefore, it is expedient to use them for the determin-
ation of trace concentrations of drugs in food products and biological media.
To enhance the analytical signal of a piezoelectric gravimetric immunosensor, two

approaches are reported: (i) an increase in the number of detection sites on the surface
of its electrode by using multi-walled carbon nanotubes and (ii) the use of gold nano-
particles or secondary antibodies for the analyte (Kwak & Lee 2019).
The purpose of this study is to develop a highly sensitive method for the determin-

ation of fluoroquinolones using a piezoelectric immunosensor based upon multi-walled
carbon nanotubes.

Materials and methods

Reagents and immunoreagents

The objects of this study are fluoroquinolones: ciprofloxacin (cip) and levofloxacin (lev)
(Sigma-Aldrich corporation, St. Louis, Missouri, USA). The immunochemical determin-
ation used the corresponding polyclonal antibodies (ab:lev; ab:cip).
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The following reagents were used: ethanol, acetone (Quimica, Barcelona, Spain),
hydrochloric acid, potassium thiocyanate, ammonium sulfate (chemically pure,
Reachem, Moscow, Russia), dimethylformamide (DMF), (chemically pure, Merck,
Darmstadt, Germany), 2-amino-3-mercaptopropionic acid (cysteine), glutaraldehyde
(GA), N-hydroxysuccinimide (NHS), N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDAC) (Sigma-Aldrich, St. Louis, Missouri, USA), and bovine serum
albumin (BSA) (PanEco, Moscow, Russia).
Multi-walled carbon nanotubes (MWCNTs) were obtained from the Institute of

Microelectronics Technology and High Purity Materials of the Russian Academy of
Sciences (Chernogolovka, Russia) during catalytic pyrolysis of ethanol vapors from 400
to 550 �C. The precatalyst was nickel nitrate which was thermally decomposed to metal
immediately before the nanotube deposition. During the catalytic decomposition of
ethanol vapors, the nanotubes were deposited onto the surface of the catalyst (nickel)
which was washed with acids after the synthesis. After washing the catalyst, the samples
were washed twice with deionized water, dried, and sieved (Grazhulene, Red’kin, and
Telegin 2012).
The multi-walled carbon nanotubes were activated as follows: 800 ml of 1:3 HNO3

and H2SO4 were added to 1mg of MWCNTs and treated with ultrasound for 3 hours at
50 �C in an ultrasonic bath (PSB-Galas, Moscow, Russia).
A phosphate physiological buffer solution (PBS) (pH ¼ 7.2) was prepared by dissolv-

ing 8.0145 g of NaCl, 0.2012 g of KCl, 2.864 g of NaH2PO4�12H2O, and 0.204 g of
KN2PO4 in 1 dm3 of bidistilled water.
Hapten-protein conjugates (Lev-BSA, Cip-BSA) were synthesized by carbodiimide

condensation. 2mg of ciprofloxacin (6lmol) or 2.2mg of levofloxacin (6 lmol) and
30mg of EDAC (156lmol) were added to a solution of 5mg of BSA (0.07 lmol) in
2.5 cm3 of distilled water. The reaction mass was kept for 4 hours at room temperature
and for 16 hours at 4 �C. Purification was carried out by dialysis against 0.2% aqueous
NaCl for 4 days; the solution was changed periodically.

Instrumentation

AT-cut piezoelectric resonators with gold electrodes (4mm in diameter) and a natural
oscillation frequency of 10MHz ± 1Hz (Etna JSC, Moscow, Russia) were used as the
sensor’s physical transducer. The resonators were obtained by magnetron gold sputter-
ing. The sensor’s analytical signal was recorded in the static mode on a CPNA-330
device (ETNA JSC, Moscow, Russia) and in the flow-injection mode on a unit consist-
ing of a 15 to 20 ml flow cell providing contact with the sample on one only side of the
sensor, a peristaltic pump (Knauer, Berlin, Germany), a DiSkop digital module (Bafika,
Moscow, Russia), and a personal computer.
The operational principles for piezoelectric immunosensors involve microweighting.

The analytical signal is the piezoelectric resonator frequency change at an increase in
the receptor layer mass due to the formation of an immunocomplex (Dergunova et al.
2008; Don et al. 2016).
The quartz resonator frequency is related to the mass of the coating applied to its

surface via the Sauerbrey equation:
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Df ¼ � 2f 20
A ffiffiffiffiffiffiffiffiffiffil qq
p

where Df is the piezoelectric resonator frequency change (Hz), f0 is its natural fre-
quency, A is the surface area of the electrodes, qq is quartz density (2.65 g/cm3), l is the
quartz shear modulus (2.95� 1011 dyne/cm2) and Dm is the resonator mass change dur-
ing surfacing. Thus, the biolayer mass (ng) is equal to:

Dm ¼ 1:23 � Df

Methods of forming the sensor detection layer

Method 1. The resonator electrode surface was defatted with ethanol, and 2ml of cyst-
eine ethanol solution (1 mM) were introduced with a microsyringe, maintained at room
temperature for 90minutes, and 5 ml of 5% GA solution were added. After 15 to
20minutes, the sensor was washed with PBS and 5 ml of 0.05% hapten-protein conjugate
solution were applied. The immunosensor was then placed in a humid chamber for 10
to 12 hours at 4 �C (Karaseva & Ermolaeva 2012).
To form a MWCNTs-based detection layer, the electrode surface was modified with

cysteine. 2 ml of a MWCNTs colloidal solution (100mg/dm3) were dosed onto the cyst-
eine substrate and maintained for 24 hours at 4 �C. Carboxyl groups were activated on
the MWCNT surface using EDAC and NHS solutions (2 ml were applied of the mixture
of 5mg EDAC and 5mg NHS in 200ml DMF) for 90minutes, after which the hapten-
protein conjugates (Method 2) or antibodies to fluoroquinolones (Method 3) were
immobilized (Farafonova et al. 2018).

Determination of fluoroquinolones

In the static mode, 5 ml of the pre-prepared test solution were dosed onto the sensor
surface containing either immobilized hapten-protein conjugates (Method 1, Method 2)
or antibodies to fluoroquinolones (Method 3). After 5minutes, the sensor surface was
washed with unbound PBS reagents (pH 7.2), dried to a constant weight, and the ana-
lytical signal was measured in air.
The flow-injection determination of fluoroquinolones was performed in a competitive

assay. A decrease in the sensor frequency (Df) was recorded while an immunocomplex
was formed between the hapten-protein conjugate immobilized on the electrode surface
(Method 2) and antibodies to fluoroquinolones that were unbound to the determined
compound in the sample.
The analytical measurement was followed by the biolayer regeneration when a regen-

erating solution washed the sensor surface or when a 200 ml 0.003M KCNS solution
which promotes dissociation of the surface immunocomplex was dosed onto the sensor
surface (Dergunova et al. 2008).
Standard FQ solutions (2 to 400 ng/cm3) for plotting a calibration graph were

obtained by dissolving the analytes in bidistilled water.
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sample preparation

10 cm3 of the sample (milk diluted 3-fold) were added to 5 cm3 of ethanol for fat
hydrolysis and 2 cm3 of ammonium sulfate were added. The sediment was separated by
centrifugation (3min, 7000 rpm) (MPW centrifuge, Warszawa, Poland). The supernatant
was used for the analysis.

Results and discussion

When using a piezoelectric immunosensor to determine low-molecular compounds, a
competitive immunoassay is typically employed to indirectly determine the analyte by
the number of antibodies bound to the hapten-protein conjugate immobilized on the
sensor surface (Karaseva & Ermolaeva 2012). The direct immunoassay format to deter-
mine low-molecular compounds is rarely used. However, the increase in the specific
surface area of the sensor when using multi-walled carbon nanotubes due to the appear-
ance of a three-dimensional high-porosity boundary layer that allows the determination
of low-molecular compounds in the direct assay format.
The possibility was considered to use a piezoelectric affinity sensor to determine

ciprofloxacin and levofloxacin in the competitive and direct assay formats in the static
and flow-injection modes.

Formation of the sensor detection layer

Figure S1 shows the conditions for forming the sensor detection layer. 2-Amino-3-mer-
captopropionic acid (cysteine), which is highly adhesive to the gold electrode surface
and forms a thin film with terminal amino groups that bind to biomolecules via a gluta-
raldehyde molecule, was chosen to be the modifier of the sensor surface (Figure S1,
method 1). Carbon nanotubes are covalently bound to the modifier and biomolecules
due to the interaction of MWCNTs carboxyl groups with amino groups (Figure S1,
method 2-3).

Figure 1. Dependence of levofloxacin-protein (Lev) and ciprofloxacin-protein conjugates (Cip) on the
analytical signal (Df). Conditions: modifier: cysteine, MWCNTs (100mg/l): 2ml, 100 ng/ml levofloxacin,
and 100 ng/ml ciprofloxacin.
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To assess the layer quality, the piezoelectric microweighting method was used which
uses the equation Df¼ kDm to determine the layer mass (Dmgk, ng) and to calculate
the concentration sensitivity of the sensor (Sc, Hz�cm3�lg�1) and the stability of the
bio-layer (N). The former characterizes the efficiency of the affine reaction on the elec-
trode surface and the latter shows the number of detection cycles without a significant
change in the analytical signal (Table 1). The bio-layer stability largely depends on the
surface modifier used and on the strength of the bonds formed during its formation.
Experimental studies have shown a similar stability of the detection layer formed by dif-
ferent methods (26 to 28 cycles) which is caused by the application of cysteine provid-
ing high adhesion to the gold electrode surface.

Investigation of conditions for the determination of fluoroquinolones

To obtain comparable characteristics of sensors with a detection layer formed according
to Method 1, Method 2 and Method 3, the concentrations of hapten-protein conjugates
and antibodies to fluoroquinolones used at the immobilization stage or in the competi-
tive assay format were preselected experimentally.
The basis for the optimal concentration of hapten-protein conjugate was the depend-

ence of the analytical signal of the sensor on the concentration of conjugate in the range
from 0.25 to 1.00. The analytical signal of the sensor for both Lev and Cip reaches its
maximum when a 35/65-concentration conjugate solution is used (Figure 1).
The basis for the optimal concentration of antibodies to fluoroquinolones in the com-

petitive and direct assay format was the dependence of the analytical signal upon the
degree of concentration of polyclonal antibodies (Figures 2 and 3). The concentration of
antibodies in the competitive format corresponds to 50% binding, which achieves the
optimal ratio of active sites on the sensor surface and the number of antibody molecules
that did not bind to a homogeneous affinity complex with fluoroquinolones (concentra-
tion degree of antibodies is 14/86 and 10/90 for levofloxacin and ciprofloxacin, respect-
ively) (Figure 2) (Dergunova et al. 2008; Karaseva & Ermolaeva 2012). In the direct
assay format, the optimal concentration of antibodies corresponds to the graph max-
imum (Figure 3) indicating the saturation of the detection layer (15/85 for levofloxacin
and 18/82 for ciprofloxacin).
To assess the selectivity of determining fluoroquinolone, the cross-reactivity coeffi-

cients (CR, %) of polyclonal antibodies to other compounds together with levofloxacin
and ciprofloxacin were calculated. The results show that polyclonal antibodies to levo-
floxacin and ciprofloxacin are highly specific (Table 2).

Table 1. Effect of immobilization methods on piezoelectric immunosensor characteristics under
static conditions.

Method Fluoroquinolone
Layer mass
Dmpl (ng)

Concentration sensitivity Sc
(Hz�cm3�lg�1)

Number of detection
cycles N

1 Levofloxacin 33.50 670.0 26
Ciprofloxacin 32.98 659.6 26

2 Levofloxacin 64.63 1313.4 28
Ciprofloxacin 64.35 1307.7 27

3 Levofloxacin 62.15 1263.0 28
Ciprofloxacin 61.94 1258.7 27
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When the Dmpl and Sc values for sensors using Method 1 and Method 2 were com-
pared, the application of carbon nanotubes at the immobilization stage increases the
added mass and the concentration sensitivity of the sensor and consequently the effi-
ciency of affine interactions for both fluoroquinolones. The application of carbon nano-
tubes in the formation of an antibody-based detection layer (Table 1) results in higher
Sc values compared to the coating obtained according to Method 2, which demonstrates
the use of a piezoelectric sensor in the direct immunoassay format to determine fluoro-
quinolone. The sorption layers formed according to Method 2 and Method 3 demon-
strate almost equal stability and a similar bio-layer mass.
The value of the analytical signal of a piezoelectric sensor depends on the measure-

ment method. For instance, under static conditions, the value depends on the time the
sensor contacts the sample. This time was set in advance to 20minutes. At the same

Figure 2. Determination of the polyclonal antibodies to levofloxacin (Lev) and ciprofloxacin (Cip) cor-
responding to 50% binding based upon the analytical signal (Df) The arrows show selected values.
Conditions: modifier: cysteine, MWCNTs (100mg/l): 2ml, 100 ng/ml levofloxacin, and 100 ng/ml
ciprofloxacin.

Figure 3. Determination of concentrations of polyclonal antibodies to levofloxacin (Lev) and cipro-
floxacin (Cip) for the direct format depending on the analytical signal (Df). The arrows show selected
values. Conditions: modifier: cysteine, MWCNTs (100mg/l): 2ml, 100 ng/ml levofloxacin, 100 ng/ml
ciprofloxacin.
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time, when measuring in the flow-injection mode which reduces the duration of the
analysis, it is important to choose the optimal flow rate of the PBS carrier solution.
When characterizing the effect of the carrier solution flow rate (1 to 120ml/min) on

response of the sensor, the maximum Df value for fluoroquinolones in the ehe competi-
tive immunoassay format is achieved at 30 ml/min by Method 1 and Method 2 (Figure
4). The possibility of measurement at a higher flow rate of the carrier solution using a
MWCNTs bio-layer indicates both a higher concentration of surface detection sites and
the steric availability of immobilized hapten-protein conjugates for interaction with anti-
bodies. The optimal flow rate of the carrier solution is equal for levofloxacin and cipro-
floxacin and does not depend upon the fluoroquinolone structure.

Table 2. Cross-reactivity coefficients for polyclonal antibodies.

Antibiotic
Antibodies, cross-reactivity (�R) %
Antibodies: Levofloxacin Antibodies: Ciprofloxacin

Levofloxacin 100 9
Ciprofloxacin 12 100
Tetracycline 1 1
Polymyxin 2 1

Figure 4. Influence of flow rate on the analytical signal (Df): (a) Method 1 [conditions: modifier: cyst-
eine, hapten-protein conjugate (35/65): 5ml, 100 ng/ml levofloxacin (Lev), and 100 ng/ml ciprofloxacin
(Cip)] and (b) Method 2 [conditions: modifier: cysteine, MWCNTs (100mg/l): 2ml, 100 ng/ml levofloxa-
cin (Lev), and 100 ng/ml ciprofloxacin (Cip)].
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Tracing the calibration function

A methodology for determining fluoroquinolones in the flow-injection and static modes
using various detection layers was developed (Figure 5). The metrological characteristics
in Table 3 show that the minimum value of the Cmin detection limit is achieved using a
sensor modified with only cysteine. However, MWCNT application contributes to the
expansion of the range of determined levofloxacin and ciprofloxacin concentrations
both in the competitive and direct assay formats. The developed methods allow the
determination in a range covering considerable areas exceeding those presented previ-
ously (Pinacho et al. 2014; Lavaee et al. 2017; Abnous et al. 2017; Hu et al. 2018), which
makes the methodology applicable for various products.

Figure 5. Calibration relationships for the determination of fluoroquinolones where the blue triangles
represent ciprofloxacin and red circles levofloxacin: (a) method 1, (b) method 2 in static mode, (c)
method 3, and (d) method 2 in flow-injection mode.
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Determination of fluoroquinolones in real samples

The accuracy of the determination of levofloxacin and ciprofloxacin was assessed by
spike-and-recovery measurements of milk. Comparison of Student’s coefficients given in
the table and calculated during the measurements did not reveal any significant differ-
ences between the spiked and recovered concentrations of fluoroquinolones (Table 4).
The relative standard deviation sr values show favorable reproducibility of the results

(sr does not exceed 0.08).

Conclusion

Conditions for creating high-capacity detection layers based on multi-walled carbon
nanotubes with the use of piezoelectric quartz microweighting have been studied. The
formation of the sensor layer was controlled layer-by-layer: a substrate with high

Table 3. Metrological characteristics for fluoroquinolone determination.

Method Fluoro-quinolone

Detection
limit
LOD

(ng/cm3)

Range of target
concentrations

(ng/cm3)
Calibration
relationship

Coefficient of
determination R2

Static mode

Method 1 Levofloxacin 3 10-100 y=-0.98x þ 654 0.95
Ciprofloxacin 4 5-80 y=-2.9x þ 950 0.95

Method 2 Levofloxacin 9 10-350 y=-2.76x þ 1065 0.96
Ciprofloxacin 8 10-370 y=-2.78x þ 1181 0.96

Method 3 Levofloxacin 25 30-650 y¼ 1.47xþ 279 0.97
Ciprofloxacin 21 25-670 y¼ 1.72xþ 248 0.98

Flow-injection mode

Method 2 Levofloxacin 9 30� 450 y=- 2.29xþ 1179 0.94
Ciprofloxacin 9 40� 490 y=- 2.15xþ 1148 0.93

Alternative methods

Pinacho et al. 2014 Ciprofloxacin 0.009 0.043-7.38
Lavaee et al. 2017 Ciprofloxacin 1.06 1.3-165.7
Hu et al. 2018 Ciprofloxacin 0.5 0.5-64
Abnous et al. 2017 Ciprofloxacin 0.009 0.3-132

Table 4. Results of fluoroquinolone determination in milk by the spike-and-recovery method
(P¼ 0.95, n¼ 3).
Fluoroquinolone Spiked (ng/cm3) Recovered (ng/cm3) Recovery (%) Reproducibility RSD

Competitive analysis format

Levofloxacin 20.0 19.5 ± 6.8 97.5 0.08
50.0 51.8 ± 7.0 103.6 0.05
70.0 71.1 ± 8.6 101.6 0.03

Ciprofloxacin 20.0 19.1 ± 3.0 95.5 0.06
50.0 51.6 ± 5.7 103.2 0.05
70.0 70.2 ± 9.2 100.3 0.03

Direct assay format

Levofloxacin 50.0 49.3 ± 5.5 98.6 0.03
100 99.0 ± 3.7 99.0 0.04
300 294 ± 14 98.0 0.03

Ciprofloxacin 50.0 49.2 ± 6.9 98.4 0.04
100 98.0 ± 6.1 98.0 0.05
300 297 ± 17 99.0 0.04
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adhesion to the gold electrode surface was obtained and antibodies or hapten-protein
conjugates were covalently immobilized. The conditions for the determination of fluoro-
quinolone using piezoelectric immunosensors modified with carbon nanotubes were
investigated. The concentrations of immunoreagents were selected and the cross-reac-
tion coefficients (CR, %) of polyclonal antibodies were determined to assess the anti-
biotic selectivity. The application of carbon nanotubes promotes a wider range of
levofloxacin concentrations (10 to 100 ng/cm3 without MWCNTs and 30 to 650 ng/cm3

with MWCNTs) and ciprofloxacin (5 to 80 ng/cm3 without MWCNTs and 25 to 60 ng/
cm3 with MWCNTs). The developed methodology provides sensitive, rapid, and select-
ive determination of fluoroquinolones in the competitive and direct assay formats. The
sensors were tested for the determination of these antibiotics in milk.
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