Wi-Fi sensing Human Detection with Kolmogorov-Wiener Filter and Gated Recurrent Neural Networks

PRESENTER:

Shibaev Pavel, Bachelor student

RESEARCH SUPERVISER:

Andrey Chupakhin, Postgraduate

MOSCOW STATE UNIVERSITY, FACULTY OF COMPUTATIONAL MATHEMATICS AND CYBERNETICS, DEPARTMENT FOR COMPUTER SYSTEMS AND AUTOMATION

Wi-Fi Sensing – Physics

Local radar Distance: 8-20 meters

Frequency bands: 390-1550 MHz 5200-6000 MHz modernarmy.ru

Wi-Fi 2412-2472 MHz 5160-5825 MHz

XFDTD Sim

Human body has unique RSSI adsorption characteristics. – Range – <u>from 9 to 30 dB</u> (human body consists 68% of H2O)

RF Absorption Rates by Common Materials

Material	Absorption Rate		
Plasterboard/drywall	3–5 dB		
Glass wall and metal frame	6 dB		
Metal door	6-10 dB		
Window	3 dB		
Concrete wall	6-15 dB		

Certified Wireless Network Adm. Study Guide

RSSI

(Received Signal Strength Information/Indicator)

It is measured in dBm and characterizes the total power of the signal received by the receiver. RSSI is influenced by many factors.

$$P_d = P_0 - 10 \cdot n \cdot \lg igg(rac{d}{d_0} igg),$$

- d distance from transmitter to receiver, m
- d_0 distance to control point (here we measure P_0), m
- P_0 "control" RSSI value on the distance d_0 , dBm
- *n* absorption rate
- P_d calculated RSSI value, dBm

Problem Statement

Input: **Find:** $r_t[n] = [r_1, r_2, r_3, \dots, r_n](1)$ **RSSI** values $y_t[n] = [y_1, y_2, ..., y_n]$ (2) labels (1 - human is present, unlabeled RSSI data r.0 – human is absent)

Algorithm A(r) maximizing accuracy score to determine human presence based on the

- Statistical approach: clean the noise, determine outliers
- ML approach: preprocess time series, tune the model, train it on the labeled data (supervised learning)

Approach analysis

Publication	Algorithm class	Denoising	Accuracy	Hardware	Venue
Zhang et al. [1], 2020	Kalman Filter + threshold variance estimation	Kalman filter	95%	3 WSN-node	3 m x 3 m
Yuan et al. [2], 2013	Sophisticated k- means	Part of k-means	94%	TelosB	18 m x 18 m
Xu et. al. [3], 2013	Markov random fields	Part of MRF*	86%	Chipcon CC1100	Office, 150 m^2
G. Troester et al. [4], 2014	Combination of means, variance и max-min with threshold	-	>= 90% (different conditions)	Nexus One smartphone	University halls
Hiroshi Saito et al [5], 2021	Weighted moving averages with thresholds	EWMA + MA*	100% (special ZigBee hardware)	Zigbee	Lab

Noise smoothing with a filter is a good solution. However, there are no publications where the Wiener-Kolmogorov filter / GRU neural networks are used to solve the RSSI–based problem (GRU might be a "fast" alternative to the popular LSTMs)

*MRF – Markov Random Fields, MA – moving average, EWMA – exponential weighted moving average

Chosen approach

Experimental stand design

 Data processing
Smoothen with Kolmogorov-Wiener filter + detect outliers with Hampel method

Discrete Kolmogorov-Wiener

The measured discrete signal is fed to the filter input: $r_t[n]$. There is also an unknown useful signal. s[n]. Signal $r_t[n]$ is fed Kolmogorov-Wiener filter to obtain output signal $x[n] = \sum_{i=0}^{N} a_i r_t[n-i]$, where N is a number of measurements in the past (often called the order of the filter), $\{a_i\}$ are filter coefficients. Coefficients are obtained with least squares method: e[n] = x[n] - s[n], $a_i = \arg\min E[e^2[n]]$

RSSI in the Living Room

RSSI in the Office Room

PREPROCESSING

To apply machine learning algorithms, RSSI data is preprocessed $r_t = [r_1, ..., r_n]$. Window size w is chosen and matrix $M = [[r_1, ..., r_w], [r_2, ..., r_{w+1}], ..., [r_{n-w}, ..., r_n]]$ is generated. Matrix is split into two parts: M_{train} (71,5% of data) M_{test} (28.5% of data).

ALGORITHMS BASED ON TREES

AdaBoost (Adaptive Boosting), Gradient Boosting, Random Forest are considered. All these algorithms are based on a combination of decision trees.

LOGISTIC REGRESSION

It is based on the maximum likelihood method and gradient descent. The output values are in [0, 1], rounding to the nearest integer occurs.

GRU Neural Network

Model Comparison *living room*

Model	Accuracy_score	TPR	TNR
Kolmogorov-Wiener filter	0.90	1.00	0.83
RandomForest	0.99	0.99	0.99
AdaBoost	0.98	0.98	0.99
Gradient Boosting	0.99	0.99	0.99
GRU network	0.98	0.97	0.99
Logistic Regression	0.98	0.97	0.99

Model Comparison office room

Model	Accuracy_score	TPR	TNR
Kolmogorov-Wiener filter	0.94	1.00	0.90
RandomForest	0.98	0.98	0.99
AdaBoost	0.97	0.95	0.99
Gradient Boosting	0.99	0.98	0.99
GRU-network	0.98	0.97	0.99
Logistic Regression	0.98	0.97	0.99

Model Comparison *living room* → *office room*

Model	Accuracy_score	TPR	TNR
Kolmogorov-Wiener filter	0.75	0.97	0.46
RandomForest	0.985	0.99	0.97
AdaBoost	0.98	0.99	0.96
Gradient Boosting	0.985	0.99	0.96
GRU-network	0.86	0.83	0.95
Logistic Regression	0.98	0.98	0.97

Model Comparison office room → living room

Model	Accuracy_score	TPR	TNR
Kolmogorov-Wiener filter	0.72	0.94	0.44
RandomForest	0.76	0.99	0.63
AdaBoost	0.76	0.94	0.73
Gradient Boosting	0.88	0.82	0.96
GRU-network	0.85	0.81	0.96
Logistic Regression	0.78	0.93	0.76

Findings from Experiments

- The Kolmogorov-Wiener filter needs special tuning for the noise of a particular room
- Machine learning algorithms are more precise
- Machine learning algorithms are more "portable"
- GRU NN current design is not sufficient to beat Logistic regression and tree-based methods in the majority of cases

Further Work

- Use GRUs for CSI predictions based on CSI data
- Collect a publicly available dataset with RSSI and CSI values to compare Wi-Fi sensing algorithms
- Use CSI and RSSI data simultaneously
- Explore techniques for sensing with multiple APs

Thank you for Attention!

• Github

• Me on telegram: @golanger

