Оценка неопределённости для графовых свёрточных сетей

Чупахин Андрей Соболева Евгения Лобанов Валерий

Студенческая образовательная программа Университета «Сириус» "Современные методы теории информации, оптимизации и управления"

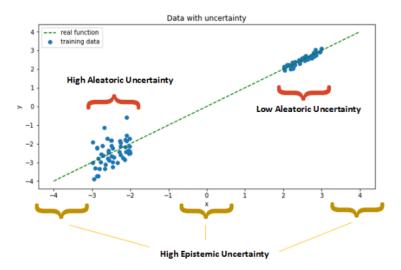
6 августа 2021 г.

Графовые свёрточные сети

- lacktriangle На слое I каждая вершина v_i^I имеет свой вектор свойств h_i^I
- ▶ Каждый слой GCN аггрегирует свойства из u_i^l , где u_i соседние вершины v, в представление следующего слоя v_i^{l+1}

$$h_j^{\text{new}} = f\left(\sum_{j=j+1}^n h_j\right)$$

Зачем нужна оценка неопределённости для графов


- Оценка уверенности модели в жизненно важных предсказаниях (медицинские прогнозы, социальные графы для детекции фрода, улучшение рекомендательных систем)
- Доразметка данных с наибольшей неопределенностью для уменьшения времени активного обучения модели

Оценки неопределенности

Предсказательную неопределенность можно разграничить двумя терминами: aleatoric и epistemic

- Aleatoric uncertainty отражает шум в данных
 - ▶ Эту часть неопределенности нельзя устранить добавлением данных
- ▶ Epistemic uncertainty отражает недостаток информации
 - Эту часть неопределенности можно снизить путем добавления новых данных

Оценки неопределенности

NUQ метод

Рассмотрим задачу бинарной классификации $(X,Y)\in\mathbb{R}^d imes\{0,1\}$. Необходимо найти правило \hat{g} , которое аппроксимирует оптимальное на датасете $\mathcal D$:

$$g^* = \arg\min_{g} \mathbb{P}(g(X) \neq Y)$$

Рассмотрим правило классификации $\hat{g}(x) = \hat{g}_{\mathcal{D}}(x)$ на датасете $\mathcal{D}.$ Определим оценку риска в каждой точке:

$$\mathcal{R}(x) = \mathbb{P}(\hat{g}(X) \neq Y \mid X = x)$$

где

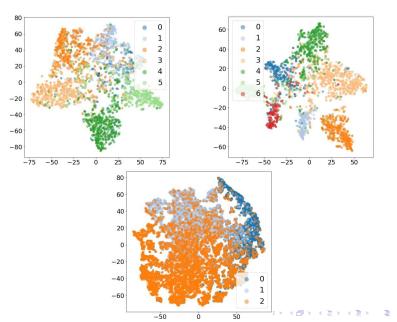
$$\mathbb{P}(\hat{g}(X) \neq Y \mid X = x) \equiv \mathbb{P}_{\mathsf{tr}} \ (\hat{g}(X) \neq Y \mid X = x) \equiv$$

$$\equiv \mathbb{P}_{\mathsf{test}} \ (\hat{g}(X) \neq Y \mid X = x)$$

NUQ метод

Предлагается рассмотреть следующее определение оценки total uncertainty :

$$\mathsf{U}_t(x) = \min\{\eta(x), 1 - \eta(x)\} + 2\sqrt{\frac{2}{\pi}}\tau(x)$$


полученное оценкой ассимтотической апроксимации

$$\mathbb{E}_{\mathcal{D}}\mathcal{L}(x) = \min\{\eta(x), 1 - \eta(x)\} + 2\mathbb{E}_{\mathcal{D}}|\hat{\eta}(x) - \eta(x)|$$

где $\tau(x)$ - стандратное отклонение Гауссиана

$$\tau^{2}(x) = \frac{1}{nh^{d}} \frac{\sigma^{2}(x)}{p(x)} \int [K(u)]^{2} du$$

t-SNE эмбеддингов : CiteSeer, Cora, PubMed

Результаты

AUROC for the Misclassification detection

Data	Model	Ep.	Al.	Total	MaxProb.
Cora	NUQ	73.68	74.66	77.42	72.69
	S-BGCN-T-K	68.8	75.3	_	_
Citeseer	NUQ	60.81	64.78	64.59	74.14
	S-BGCN-T-K	60.7	67.2	_	_
PubMed	NUQ	65.18	71.23	71.09	67.64
	S-BGCN-T-K	64.2	69.3	1	_

Результаты

AUROC for the Out of Distribution detection

Data	Model	Ep.	Al.	Total	MaxProb
Cora	NUQ	$\textbf{70.98}\pm\textbf{0.02}$	71.45 ± 0.02	71.81 ± 0.02	71.84 ± 0.03
	S-BGCN-T-K	70.8	85.5	_	_
Citeseer	NUQ	$\textbf{55.46}\pm\textbf{0.03}$	61.76 ± 0.02	61.75 ± 0.02	71.57 ± 0.05
	S-BGCN-T-K	55.1	78.4	_	_
PubMed	NUQ	58.84 ± 0.02	66.07 ± 0.03	66 ± 0.01	59.78 ± 0.05
	S-BGCN-T-K	59.2	71.8	_	_

Дальнейшая работа

- ▶ Построить PCA эмбеддингов, визуализация uncertainty
- ▶ Проверить метрики на state-of-the-art архитектурах GCN
- Сравнить NUQ с deep ensembles GCN
- Применить bi-Lipschitz для GCN
- **.**...

Вклад участников

- ▶ Андрей работа с эмбеддингами и архитектурами GCN
- Евгения подсчёт метрик и графики
- ▶ Валерий NUQ и misclassification detection