A new structural approach to study lipidprotein interactions within a viral envelope

Larisa Kordyukova

Belozersky Institute of Physico-Chemical Biology. Lomonosov Moscow State Un

Orthomyxoviridae. Genus Influenzavirus A

Harris et al., PNAS, 2006, 103: 19123

- Mechanisms of HA and NA interactions with a layer of M1 matr lipid membrane are poo
- Such interactions are particles assembly and t

Structure of influenza hemagglutinin (HA)

Cryo-EM: the N-terminal part of HA membrane anchor is resolved

BUT: The C-terminal part of TMD and the CT including S-acylated c

MALDI-TOF MS to study S-acylation of HA

Cytoplasmic tail of HA is β-structural

Small Angular X-ray Scattering (SAXS) to analyze protein structure in solution

"Deutsche Synchrotrone" (DESY), Germany

(association increas

SAXS to model M1-lipid and M1-HA interactions?

EM and DLS characterization of liposomes

Liposomes extruded through 100 nm pores

10 mol.% DOPS 90 mol.% DOPC

30 mol.% DOPS

70 mol.% DOPC

Mixtures of lipid vesicles: SAXS data analysis

Bilayer electron density

Mixtures of lipid vesicles, SAXS analysis

Program BILMIX* (BIlayer Lipid MIXtures) restores the electron density of a lipid bilayer and simultaneously generates the size distribution of the unilamellar lipid vesicles (using either spherical or ellipsoidal models)

BILMIX allows also the modelling of asymmetric electron-density profiles, e.g. proteins associated with the inner or outer leaflets of the liposome

* Konarev P.V., Petoukho Fedorova N.V., Volyns Batishchev O.V. J.Appl. Cryst. (2)

SAXS to model M1 - anionic lipid interactions

Restored electron

density profiles

SAXS experimental curves and BILMIX calculations

30% DOPS + 70% DOPC

In <u>two-component liposomes</u>, the left maximum splits into two sub-peaks upon loading liposomes with M1: the left (M1-associated) sub-peak with increased intensity implies charged lipid condensation. The right sub-peak indicates outer monolayer bending inside

P12 beam synchrotron : III (DES ATSA BILM

3

SAXS to model M1 – raft lipid interactions

Restored electron

SAXS experimental curves and BILMIX calculations

r 30% bPS + 10% POPC + 40% SM + 20% Chol

In <u>four-component liposomes</u>, we do not observe a separated proteinassociated peak after loading with M1; the intensity of the left maximum increases. We may suggest that M1 introduces its helices into the lipid bilayer.

Hypothesis

- Adsorption of M1 protein at the liposomes containing phosphatidylserine leads to condensation of lipids underneath;
- Imbalance in the area of lipid monolayers occurs, leading to the bending of the membrane inside the
 - of proteir
- Cholester
 process a
 membrar

Liposomes from viral lipids +/- HA LI45 peptide

Virion

HA C-terminal peptide of H1N1 virus: "LI45" (45 amina NH2-LESMGIYQILAIYSTVASSLVLLVSLGAISFWMCSNGSI triply palmitoylated at three conserved cysteine reside

SAXS to model M1 - viral lipid interactions

- 1. A drop of the electron density at the intermonolayer surface is observed upon adsorption of the M1 protein only (not in the case of pure liposomes);
- 2. The M1-associated peak appears that is completely separated from the second, lipid-associated peak;
- 3. We do not see shifting of the lipid-associated sub-peak closer to the bilaye center. Thus, membrane tubular invaginations are not formed in complex mixtures of viral lipids in contrast to synthetic charged vesicles.

SAXS to model M1 - HA interactions

- 1. In contrast to native liposomes, a drop of the electron density at the intermonolayer surface is observed even before loading with M1 protein.
- 2. This result indicates that triply palmitoylated HA LI45 peptides make lip bilayer more ordered, and viral membrane becomes raft-like;
- 3. Two positive maxima move to the periphery from the bilayer centrum up adsorption with M1. This effect is more pronounced in proteoliposomes compared to native liposomes: the whole width of their lipid bilayer increby 2 nm (1 nm at each side).

CONCLUSIONS

- M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer thus resulting in formation of lipid tubules;
- This effect vanishes in the presence of the raftforming constituents (sphingomyelin and cholesterol);
- Hemagglutinin anchoring peptides bearing three fatty acid residues demonstrate a specific role in ordering of viral lipid membrane into the raft-like one;

 Hemagglutinin anchoring peptides may stimulate the oligomerization of M1 on the lipid men form a viral scaffold for subsequent buddi virion from the plasma membrane of the infection.

MAIN PARTICIPANTS:

Petr Konarev, Eleonora Shtykova Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russia **SAXS analysis**

Natalyia Fedorova, Alexander Ksenofontov Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia M1 preparations & DLS measurements

Oleg Batishchev Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia **Biophysics of lipid membranes**

Dmitri Svergun P12 beamline (EMBL) of synchrotron storage ring Petra-III (DESY), Hamburg, Germany Tatiana TimofeevaD. I. Ivanovsky Institute of Virology,FSBI N. F. Gamaleya NRCEM,Ministry of Health of RussianFederation, Moscow, Russia (Virus)

Sergei Abra Department of Moscow State

Andrei Moi Department of Moscow State

Thank you for your attention!

