

ScienceDirect

Mendeleev Commun., 2021, 31, 570-571

Mendeleev Communications

Effects of Sn⁴⁺ dopant ions located either in the bulk or at crystallite surfaces on the ultraviolet photocatalytic activity of anatase

Mikhail V. Korolenko, Pavel B. Fabritchnyi* and Mikhail I. Afanasov

Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation. Fax: +7 495 932 8846; e-mail: pf@radio.chem.msu.ru

DOI: 10.1016/j.mencom.2021.07.045

Isovalent Sn⁴⁺ dopant cations do not have a significant effect on the ultraviolet photocatalytic activity of anatase (TiO₂) regardless of their location in the bulk or at the surfaces of crystallites. This is due to the formation of no charge balance oxygen vacancies V_O acting as (e⁻,h⁺) recombination centers towards photogenerated electrons and holes upon doping with Sn⁴⁺. Nevertheless, the analysis of a sample containing surfacelocated heterovalent Sb³⁺ ions (isoelectronic with Sn²⁺) revealed a significant weakening of the negative effect of V_O, which can be accounted for by the presence of a stereochemically active lone pair E of 5*s* electrons in the nearest vicinity of V_O.

Keywords: Sn^{4+} -doped anatase TiO₂, bulk and surface sites, photocatalytic activity, decolorization of methyl orange, ¹¹⁹Sn and ¹²¹Sb Mössbauer spectroscopy, stereochemically active lone pair.

Earlier, we used ¹¹⁹Sn Mössbauer spectroscopy¹ to study the stabilization of tin dopant ions at uppermost surface layers of anatase crystallites and physicochemical processes occurring at the $Ti_{1-x}Sn_xO_2$ /gas interface. The samples were synthesized by the hydrogen annealing of polycrystalline Ti1-xSnxO2 obtained by the calcination of coprecipitated Ti^{IV} and Sn^{IV} hydroxides in air. Upon annealing, Sn⁴⁺ ions on crystallite surfaces were reduced to a divalent state and, owing to their stereochemically active electronic lone pair E, located on low coordination sites (CN < 6) energetically unfavorable for Ti⁴⁺. The subsequent contact with ambient air resulted in the formation of isolated Sn⁴⁺ impurity centers, whose surface location was confirmed by both X-ray photoelectron spectroscopy (XPS) and an analysis of ¹¹⁹Sn Mössbauer spectra recorded after exposure of H₂-annealed $Ti_{1-x}Sn_xO_2$ to various gases.¹ These $Ti_{1-x}Sn_xO_2$ powders are particularly suitable for comparing the effects of a dopant located at surface sites or in the bulk of TiO2-based photocatalytic materials promising for solar energy conversion.²⁻⁴ The advantage provided by the use of Sn⁴⁺ dopant ion, which is isovalent with the host Ti⁴⁺, is due to the fact that its presence in TiO₂ does not involve the formation of interfering charge-balance defects, in contrast to heterovalent additive ions.⁵ Moreover, the investigation of $Ti_{1-x}Sn_xO_2$ may provide some insight into the effects related to intermediately formed Sn²⁺ ions. Thus, we studied the photocatalytic activity of $Ti_{1-x}Sn_xO_2$ powders in the decolorization reaction of methyl orange (MO), which was recently used⁶ to compare the modifying actions of bulk-located Cr³⁺ and Fe³⁺.

The single-phase anatase TiO_2 powders were irradiated using a LED ($\lambda = 370$ nm, P = 3 W). Optical density was determined at $\lambda = 460$ nm, and the values of k were calculated using a linear equation of first-order reactions.

Samples containing Sn⁴⁺ ions located in the bulk of crystallites were obtained by the annealing of a coprecipitated Ti_{1-x}Sn_x(OH)₄ precursor (x = 0.003 or 0.006) in air at 500 °C for 2 h. To obtain the samples containing Sn⁴⁺ at surface sites, the same precursor was annealed in a hydrogen atmosphere at 500 °C for 2 h. To prepare the hydroxide precursors Ti_{1-x}Sn_x(OH)₄, a stannic chloride solution enriched in the Mössbauer isotope ¹¹⁹Sn to 92% was used. Figure 1(*a*) shows the Mössbauer spectrum of the air-annealed sample (material 1, see Online Supplementary Materials). The spectral parameters (the isomer shift $\delta_1 = 0.01 \pm 0.01$ mm s⁻¹, the quadrupole splitting $\Delta E_{Q1} = 0.41 \pm 0.01$ mm s⁻¹, the full width at half maximum of each doublet component $\Gamma_1 = 0.88$ mm s⁻¹, and the spectral contribution $A_1 = 100\%$) evidenced the presence of tetravalent tin on a site of unique type assignable to a distorted oxygen octahedron of the anatase structure. Moreover, the above

Figure 1 ¹¹⁹Sn Mössbauer spectra (recorded at 100 K) of 0.6 at% Sn/TiO₂ samples obtained by the annealing of a coprecipitated precursor (*a*) in air (2 h at 500 °C) and (*b*) in H₂ (2 h at 400 °C, *in situ* measurements) and (*c*) after exposure of the hydrogen-annealed sample to ambient air.

© 2021 Mendeleev Communications. Published by ELSEVIER B.V. on behalf of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences.

-570 -

values are consistent with those reported earlier for a similar sample annealed in air at 650 °C, which were ascribed to the bulk-located Sn⁴⁺. To determine the valence state of tin upon the hydrogen annealing of $Ti_{1-r}Sn_r(OH)_4$ (hydrogen-annealed material 2, see Online Supplementary Materials), we performed in situ Mössbauer measurements at 100 K in the reactor used for hydrogen annealing, which was equipped with a lateral thin-window quartz sample cell to avoid the contact of a test sample with ambient air [Figure 1(b)]. As can be seen, the majority of the Sn⁴⁺ was reduced to a divalent state, revealed by the appearance of an asymmetric doublet at positive Doppler velocities. This new spectral component is a superposition of two quadrupole doublets D1 and D2, either being imputable to Sn^{II} species possessing a lone pair E but located at nonequivalent sites with CN < 6. Their spectral parameters are $\delta_{2(1)} = 3.18 \pm 0.04$ mm s⁻¹, $\Delta E_{Q2(1)} = 1.71 \pm 0.11$ mm s⁻¹, $\Gamma_{2(1)} = 0.85 \pm 0.03 \,\mathrm{mm \, s^{-1}}, \,\mathrm{and} \,A_{2(1)} = 30\%; \delta_{2(2)} = 2.82 \pm 0.04 \,\mathrm{mm \, s^{-1}}, \\ \Delta E_{Q2(2)} = 1.72 \pm 0.11 \,\,\mathrm{mm \, s^{-1}}, \,\, \Gamma_{2(2)} = 0.85 \pm 0.03 \,\,\mathrm{mm \, s^{-1}}, \,\,\mathrm{and}$ $A_{2(2)} = 59\%$. They are consistent with those previously assigned to Sn^{2+} ions on the surfaces of anatase TiO₂ crystallites.¹ As for the minor third spectral component, its parameters $(\delta_{\rm m} = 0.07 \pm 0.05 \text{ mm s}^{-1}, \Delta E_{\rm Qm} = 0.44 \pm 0.13 \text{ mm s}^{-1},$ $\Gamma_{\rm m} = 0.85 \pm 0.03$ mm s⁻¹, and $A_{\rm m} = 11\%$) are assignable to pristine Sn⁴⁺ ions still remaining in the bulk positions.

Figure 1(c) shows the ¹¹⁹Sn Mössbauer spectrum recorded after contact of material 2 cooled to room temperature with ambient air. This spectrum revealed the reoxidation of Sn²⁺ ions and, consequently, their easy accessibility to oxygen molecules, as expected for a surface-located species (material 3, see Online Supplementary Materials). Thus, we used materials 1 (bulk) and 3 (surface) to compare the photocatalytic activities of anatase containing Sn⁴⁺ in the bulk and on surface sites. The subsequent photocatalytic experiments were carried out at the concentrations [Sn] of 0.3 and 0.6 at% for both materials 1 and 3. The former value corresponds to the highest concentration of tin utilized in ref. 1 while the latter is the lowest concentration of antimony, still allowing to determine its virtual valence state by means of ¹²¹Sb Mössbauer spectroscopy. Figure 2 shows that, in both cases, the location of Sn⁴⁺ ions did not significantly affect the kinetics, in contrast to a drastic decrease in the activity of the sample doped with Fe³⁺ ions proven to create V₀. Thus, it would be tempting to consider the kinetics in the presence of TiO₂ doped with surfacelocated Sn²⁺ ions exhibiting a positive charge deficiency like Fe³⁺. Unfortunately, this could not be done because of their fast oxidation under ambient air. For this reason, we studied the kinetics in the presence of TiO2 powders doped with surfacelocated Sb³⁺ ions, which possess a lone pair E like Sn²⁺ and are stable in air at room temperature. A sample containing ~0.6 at% Sb³⁺ was prepared using a published procedure⁷ involving dropwise deposition of a SbCl₅ solution on a TiO₂ powder wetted with an ammonia solution. The relevant ¹²¹Sb Mössbauer

Figure 3 ^{121}Sb Mössbauer spectrum of the hydrogen-annealed 0.6 at% $\text{Sb}^{5+}/\text{TiO}_2$ sample recorded at 100 K.

spectrum (Figure 3) evidenced that the majority of Sb⁵⁺ ions $(\delta^* = -0.01 \pm 0.1 \text{ mm s}^{-1})$, the quadrupole coupling constant $e^2 q Q_{5/2}^* = 2 \pm 2 \text{ mm s}^{-1}$, $\Gamma^* = 2.55 \pm 0.15 \text{ mm s}^{-1}$, and $A^* = 22\%$) was reduced upon the subsequent hydrogen annealing to a trivalent state ($\delta^{**} = -12.3 \pm 0.2 \text{ mm s}^{-1}$, $e^2 q Q_{5/2}^{**} = 17.7 \pm 1.1 \text{ mm s}^{-1}$, $\Gamma^{**} = 2.8 \pm 0.2 \text{ mm s}^{-1}$, and $A^{**} = 78\%$). The virtual concentration of Sb³⁺ ions, whose spectral parameters are typical of cations possessing a lone pair E, reflecting the hybridization of their 5s and 5p electronic orbitals, 8-10 in this sample amounted to nearly 0.5 at%.[†] The photocatalytic measurements revealed a significant decrease in the activity of Sb³⁺-doped TiO₂ ($k_{\text{Sb}^{3+}}/k_0 = 0.56$), as compared to that observed in the presence of surface-located Sn⁴⁺ ions creating no V_O (material 3, $k_{Sn^{4+}}/k_0 = 1.16$). However, the slowing of the kinetics induced by Sb³⁺ ions is obviously much weaker than that observed in the presence of 0.6 at% Fe³⁺ ($k_{\text{Fe}^{3+}}$) $k_0 = 0.13$), the trivalent dopant having no E. These results allowed us to suggest that the moving of the negative charge density of Sb³⁺ lone pair E towards the nearest vacancy V_O diminishes its efficiency as an (e^{-},h^{+}) recombination center.

This work was supported by the Russian Foundation for Basic Research (grant no. 19-03-00061).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2021.07.045.

References

- R. A. Astashkin, P. B. Fabritchnyi, M. I. Afanasov, M. V. Korolenko, A. Wattiaux, S. Bordère, C. Labrugère and C. Delmas, *Solid State Sci.*, 2013, 25, 143.
- 2 H. M. Yadav, T. V. Kolekar, A. S. Barge, N. D. Thorat, S. D. Dolekar, B. M. Kim, B. J. Kim and J. S. Kim, *J. Mater. Sci.: Mater. Electron.*, 2016, **27**, 526.
- 3 S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M. N. Hedhili, D. H. Anjum, M. Harb, C. Geantet, J.-M. Basset and E. Puzenat, *ChemSusChem*, 2014, 7, 1361.
- 4 T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. C, 2008, 112, 1167.
- 5 A. Di Paola, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano, *Int. J. Photoenergy*, 2001, **3**, 171.
- 6 M. V. Korolenko, P. B. Fabritchnyi and M. I. Afanasov, *Mendeleev Commun.*, 2020, 30, 383.
- 7 M. V. Korolenko, P. B. Fabritchnyi, M. I. Afanasov and C. Labrugère, Bull. Russ. Acad. Sci.: Phys., 2015, 79, 1055 (Izv. Akad. Nauk, Ser. Fiz., 2015, 1185).
- 8 G. G. Long, J. G. Stevens and L. H. Bowen, *Inorg. Nucl. Chem. Lett.*, 1969, 5, 799.
- 9 P. E. Lippens, Solid State Commun., 2000, 113, 399.
- 10 K.Tolborg, C. Gatti and B. B. Iversen, IUCrJ, 2020, 7, 480.

Received: 12th March 2021; Com. 21/6488

[†] Taking into account that the surface-located Sb³⁺ ions may exhibit a somewhat lower value of the recoil-free fraction *f* at 100 K than that of the bulk-located Sb⁵⁺ ions, the spectral contribution of the former ions presumably provides an underestimated value of their abundance.