
antibiotics

Article

Triphenilphosphonium Analogs of Chloramphenicol as
Dual-Acting Antimicrobial and Antiproliferating Agents

Julia A. Pavlova 1, Zimfira Z. Khairullina 1 , Andrey G. Tereshchenkov 2 , Pavel A. Nazarov 2,3,
Dmitrii A. Lukianov 4, Inna A. Volynkina 5, Dmitry A. Skvortsov 1, Gennady I. Makarov 6, Etna Abad 7 ,
Somay Y. Murayama 8, Susumu Kajiwara 9, Alena Paleskava 10,11, Andrey L. Konevega 10,11,12 ,
Yuri N. Antonenko 2 , Alex Lyakhovich 13,14 , Ilya A. Osterman 1,4,15,* , Alexey A. Bogdanov 1,2 and
Natalia V. Sumbatyan 1,2,*

����������
�������

Citation: Pavlova, J.A.; Khairullina,

Z.Z.; Tereshchenkov, A.G.; Nazarov,

P.A.; Lukianov, D.A.; Volynkina, I.A.;

Skvortsov, D.A.; Makarov, G.I.; Abad,

E.; Murayama, S.Y.; et al.

Triphenilphosphonium Analogs of

Chloramphenicol as Dual-Acting

Antimicrobial and Antiproliferating

Agents. Antibiotics 2021, 10, 489.

https://doi.org/10.3390/antibiotics10050489

Academic Editor: George Dinos

Received: 31 March 2021

Accepted: 19 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia;
julidev@yandex.ru (J.A.P.); zkh_msu@mail.ru (Z.Z.K.); skvorratd@mail.ru (D.A.S.);
bogdanov@belozersky.msu.ru (A.A.B.)

2 A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University,
Leninskie Gory 1, 119992 Moscow, Russia; tereshchenkov@list.ru (A.G.T.); nazarovpa@gmail.com (P.A.N.);
antonen@belozersky.msu.ru (Y.N.A.)

3 Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
4 Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;

Dmitrii.Lukianov@skoltech.ru
5 School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia;

inna-volynkina@yandex.ru
6 Laboratory of the Multiscale Modeling of Multicomponent Materials, South Ural State University,

454080 Chelyabinsk, Russia; makarovgi@susu.ru
7 Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain;

etna.abad@upf.edu
8 Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama,

Shinjuku-ku, Tokyo 162-8340, Japan; smurayam@nih.go.jp
9 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan;

kajiwara.s.aa@m.titech.ac.jp
10 Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;

polesskova_ev@pnpi.nrcki.ru (A.P.); konevega_al@pnpi.nrcki.ru (A.L.K.)
11 Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
12 NRC “Kurchatov Institute”, 123182 Moscow, Russia
13 Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational

Medicine, 630117 Novosibirsk, Russia; lyakhovich@gmail.com
14 Vall D’Hebron Institut de Recerca, 08035 Barcelona, Spain
15 Genetics and Life Sciences Research Center, Sirius University of Science and Technology, 1 Olympic Ave,

354340 Sochi, Russia
* Correspondence: i.osterman@skoltech.ru (I.A.O.); sumbtyan@belozersky.msu.ru (N.V.S.)

Abstract: In the current work, in continuation of our recent research, we synthesized and studied
new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and
the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of
different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds
bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to
that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the
mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL.
By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed
a possible explanation for the specificity of the action of these analogs in the translation process.
CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria,
as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown
that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular
membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on
bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of
their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells
with these compounds.
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1. Introduction

The search for new antimicrobial agents remains a crucial and urgent task, which
is largely due to the existence and endless emergence of resistant bacterial strains with
various mechanisms of acquired resistance to nearly all clinically relevant antibiotics.
These mechanisms include mutations in the drug target site, enzymatic modification
or degradation of antibiotics, and active efflux through porins and other permeability
barriers [1–3].

One promising approach to creating new antibiotics is the development of the so-
called twin-drugs–dual-acting compounds, which contain two pharmacophores covalently
linked in one molecule. This approach makes it possible to potentially create drugs
that are active against drug-resistant microorganisms, have an expanded spectrum of
antibacterial activity, compared to the original antibiotics, and have a reduced potential for
the generation of bacterial resistance [4]. While each of the two pharmacophores in such
a hybrid drug molecule is expected to act independently of the original biological target,
the non-cleavable covalent linker tethering the two active moieties endows the drug with
a dual mechanism of action. These pharmacophores can be either two antibiotics or an
antibiotic with an adjuvant that increases the access of the drug to its intracellular target
(e.g., an efflux pump inhibitor or membrane and cell wall-penetrating group, or a moiety
that changes the physical properties of the molecule).

Quinolone-based hybrid compounds, especially fluoroquinolones bound to other
antibacterial agents, such as oxazolidinones, anilinouracil compounds, tetracyclines, ben-
zylpyrimidine, macrolides, quinolones, oxoquinolysines, or aminoglycosides, are the most
studied examples of tethered antibiotics [5–7]. Many studies on the development of dual-
acting compounds have been conducted on aminoglycosides by linking these molecules to
quinolones, as well as to β-lactam antibiotics, CHL, oxazolidinones, or short amphiphilic
peptides. Some dual-acting glycopeptide antibiotics have been synthesized, including
β-lactam, macrolide moieties, and fragments of natural antimicrobial peptides [6–8]. Many
of these compounds exhibited a high antibacterial activity not only against Gram-positive
strains, but also against Gram-negative bacteria, had a broad spectrum of activity and
reduced the toxicity to the mammalian host, compared to the original antibiotics, and were
also active against bacterial drug-resistant strains. A number of such hybrid antibiotics
have had clinical success in recent years [7].

Another type of dual-acting antibiotics are hybrid compounds containing a component
that inhibits efflux pumps, whose mutations are the main cause of intrinsic resistance to
the currently available antibiotics against Gram-negative bacteria. This component can be
either non-antibacterial [7,9,10] or antibacterial [6,7,11]. For example, aminoquinolones
or tobramycin are used to construct dual-acting agents not only as antibiotics, but also as
membrane efflux pump inhibitors [11].

Another type of molecule that can be used in the design of dual-acting antibiotics are
moieties that provide a better penetration of the antibiotic into bacterial cells. For example,
siderophores, which are high-affinity iron chelators produced by bacteria and fungi, have
been successfully used in the past to promote active transport of antibiotics into bacterial
cells to enhance the action of β-lactam or penicillin antibiotics [7,11].

Moreover, benzoxaboroles are known to enhance the transport of macromolecules
into the cell as a result of the interaction with 1,2- and 1,3-diol polysaccharides located
on the cell surface. These properties, as well as the ability of some heterocyclic boronic
acids and benzoxaborole derivatives to exhibit activity against Gram-negative bacteria
with multi-drug resistance, were considered when developing chimeric antibiotics based



Antibiotics 2021, 10, 489 3 of 22

on glycopeptides or polyene macrocyclic antibiotics containing benzoxaboroles in their
structure [6,12] and benzoxaborole derivatives of azithromycin [8].

Triphenylphosphonium (TPP) is a synthetic cation that readily penetrates biological
membranes. The positive charge of this moiety is dispersed over the three phenyl residues.
As a result, the water dipoles cannot be retained by the cation and, therefore, do not form
an aqueous shell preventing the ion from penetrating the membrane using the energy of the
transmembrane potential [13]. TPP and its synthetic derivatives have been actively studied
mainly as mitochondria-targeting compounds, revealing many interesting properties that
can be used to create therapeutic agents [14,15]. In particular, alkyl-TPPs and their deriva-
tives exhibit properties of mild uncouplers of oxidative phosphorylation, with a mechanism
comprising the interaction of alkyl-TPP cations with anions of fatty acids, facilitating fatty
acid cycling in the membrane [16]. It has also been shown that TPP derivatives exhibit
antibacterial properties [17–25]. Because of the similarity of bioenergetic processes between
bacteria and mitochondria, this effect can be associated both with a decrease in the bacterial
membrane potential and with destabilization of the lipid membrane due to a detergent-like
effect or the induction of the non-specific membrane permeability at high concentrations of
alkyl-TPP derivatives and an increase in the alkyl chain length [17,22,23,26].

It has been reported that along with their antibacterial properties, TPP derivatives
of various structures exhibit antiproliferative effects [27–30]. Most cancer cells possess
functional mitochondria, but the oncogenic transformation itself often increases mitochon-
drial metabolism [31]. The mitochondria of cancer cells can have increased transmembrane
potentials in comparison with normal cells [32]. However, the bioenergetics of resistant
and cancer stem cells (CSCs), which are mainly responsible for metastasis, differ from
the cancer cells themselves [33–35]. Ultimately, this may allow cancer cells to be discrimi-
nated according to their degree of aggressiveness. The conjugation of TPP with various
bioactive compounds [19,29,30] or nanocrystals [36] gives chimeric molecules an increased
cellular accessibility and enhances their cytotoxicity against tumor cells. For this reason,
TPP conjugates with paclitaxel [37] and doxorubicin [38] have recently been suggested
to treat drug-resistant cancers. In turn, several TPP-containing compounds have been
used for the elimination of cancer stem cells (CSCs) [39]. A growing body of evidence
has now shown that even at low concentrations, some antibiotics can cause mitochondrial
dysfunction due to similarities in their structures with bacteria [40,41]. On this basis, some
mitochondria-targeting antibiotics have been used as anti-cancer drugs [42,43]. Overall,
the synthesis of compounds combining antibiotic derivatives with targeted delivery to
mitochondria via a TPP moiety may represent a novel approach in anti-cancer therapy,
especially when applied to resistant forms of cancer.

CHL is a ribosome-targeting antibiotic that binds to the peptidyl transferase center
(PTC) [44] of the bacterial ribosome and inhibits peptide bond formation [45]. CHL has
been frequently used as a platform to obtain derivatives with an increased potency [46].
This drug is especially amenable to chemical derivatization, because its dichloroacetyl
moiety can be easily replaced with a variety of other chemical scaffolds, such as amino
acids [47], peptides [48], and an acyl group carrying the polyamine extension [49,50],
endowing it with new properties. Thus, the synthesis of novel CHL analogs containing
a TPP cation in their structure represents a promising challenge in terms of creating new
potential dual-acting antibiotics and antiproliferative agents.

In the current study, we continued our research on the synthesis and exploration of
semi-synthetic TPP analogs of CHL [51], i.e., CAM-Cn-TPPs, with the goal of obtaining
a new group of CHL derivatives with potentially improved properties. To this end, the
dichloromethyl group of the parent CHL compound was replaced with alkyl(triphenyl)
phosphonium residues, resulting in CAM-Cn-TPP molecules (Figure 1). Using a competi-
tion binding assay, CAM-C10-TPP was shown to exhibit a stronger binding to the bacterial
ribosome, compared to CHL, and the new CHL analogs also inhibited protein synthesis
in vitro. A toeprinting assay revealed that the mode of action of CAM-Cn-TPP on the
bacterial ribosome differs from the site-specific action of CHL, as previously shown for
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CAM-C4-TPP [51]. While the atomic-resolution structure of the ribosome-bound CAM-C4-
TPP compound has been solved and reported recently, possible interactions of the other
CAM-Cn-TPP compounds with the E. coli ribosome were modeled by molecular dynamics
simulations. Using a potential-sensitive fluorescent probe, we found that CAM-C10-TPP
and CAM-C14-TPP significantly reduce the membrane potential in Bacillus subtilis cells. Ex-
periments with bacteria demonstrated that, in comparison to CHL, CAM-C10-TPP inhibited
the growth of the Gram-positive bacteria, Staphylococcus aureus, Listeria monocytogenes, Bacil-
lus subtilis, and Mycobacterium smegmatis, to a greater extent. In addition, CAM-C10-TPP
and CAM-C14-TPP suppressed some strains of CHL-resistant bacteria. Thus, we showed
that CAM-Cn-TPP compounds act both on the ribosome and on bacterial cell membranes,
with the TPP fragments of CAM-C10-TPP and CAM-C14-TPP contributing significantly
to the inhibitory effect on bacterial growth. We also showed that TPP derivatives are able
to target mitochondria in chemoresistant breast cancer cells and derived cancer stem-like
cells and reduce their proliferation.

1 
 

 

  
Figure 1. Scheme of the chemical synthesis of triphenylphosphonium (TPP) analogs of CHL: CAM-C10-TPP and CAM-C14-
TPP. Step 1: 1M hydrochloric acid (HCl) at 100 ◦C for 2 h. Step 2: (1) Boc-GABA-OSu, dimethylformamide (DMF), and
diisopropylethylamine (DIPEA) at 25 ◦C for 24 h; and (2) trifluoroacetic acid (TFA) at 25 ◦C for 30 min. Step 3: benzene at
85 ◦C for 12 h. Step 4: (1) 5, 1-hydroxysuccinimide (HOSu), N,N′-dicyclohexylcarbodiimide (DCC), and dichloromethane
(CH2Cl2) at 0 ◦C for 2 h, then overnight at RT; (2) 2, DIPEA, DMF, and stirring at RT for 5 h, then overnight at 4 ◦C. Step 5:
(1) 5, HOSu, DCC, and dichloromethane (CH2Cl2) at 0 ◦C for 2 h, then overnight at RT; (2) 6, DIPEA, DMF, and stirring at
RT for 5 h.

2. Results and Discussion
2.1. Synthesis of CAM-Cn-TPPs

We have recently synthesized and extensively characterized the first semi-synthetic
TPP analogs of CHL, CAM-C4-TPP [51]. In the current study, we continued our research
on the TPP analogs of CHL, synthesized two more of them, CAM-C10-TPP and CAM-
C14-TPP, and explored their inhibitory properties for the potential development of novel
antimicrobials, as well as antiproliferative agents.

The dual-action mechanism of these compounds should be mediated, on the one hand,
by their binding and action on the bacterial ribosome (similar to the action of CHL), and,
on the other hand, by their action on bacterial membranes (similar to alkyl-TPP salts). For
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this purpose, the dichloromethyl group of CHL was replaced with an alkyl-TPP moiety,
resulting in CAM-Cn-TPP molecules (Figure 1).

These compounds were designed with the idea that the amphenicol moiety would
anchor the compound in the canonical CHL binding site within the PTC of the bacterial
ribosome, and an additional group would form multiple interactions with the walls of the
nascent peptide exit tunnel (NPET). We chose TPP as such a group because its positive
charge, delocalized over the relatively large hydrophobic surface of the benzene rings, can
provide non-specific interactions with negatively charged phosphates of the 23S rRNA,
and its three phenyl rings may be available for stacking with nucleobases. In the case of
CAM-C4-TPP [51], we showed how this analog binds to the bacterial ribosome and inhibits
bacterial protein synthesis, both in vitro and in vivo. Moreover, according to our rational
design hypothesis, the TPP group in these compounds should allow CAM-Cn-TPPs into
bacterial cells, since the TPP itself is known to be a membrane-penetrating cation [13].

As for the interactions with the ribosome, we expected that linkers of variable lengths
connecting the two terminal parts of these compounds (CAM and TPP) would ensure
the optimal binding of CAM-Cn-TPPs to the ribosome and enable similar non-specific
interactions with rRNA nucleotides at different depths of the NPET, as observed in the
X-ray crystal structure of the Thermus thermophilus 70S ribosome in the complex with the
CAM-C4-TPP [51]. The choice of linker length was also based on the data on the inhibition
of bacterial growth by alkyl-TPPs, where it was shown that the toxic effect on different
bacterial species increases with increasing lipophilicity, and this effect is related to the
different permeability of bacterial coats for alkyl-TPPs [17]. In addition, we modeled the
length of the linkers using in silico simulations. Linkers of lengths 10 (C10) and 14 (C14)
from the methylene groups were chosen. In the latter case, an amide group was introduced
to reduce any possible side effects associated with the high lipophilicity of the resulting
compound.

The synthesis of CAM-C10-TPP and CAM-C14-TPP was performed by the acylation
of chloramphenicol amine (CAM) with carboxyl derivatives of TPP using succinimide ester
(Figure 1), which is similar to the synthesis of CAM-C4-TPP [51]. The chemical structures
of the obtained CAM-Cn-TPP molecules were confirmed by mass-spectrometric analysis,
as well as by 1H-, 13C-, and 31P-NMR.

2.2. CAM-Cn-TPPs Bind to the Bacterial Ribosome with Different Affinities and Inhibit Protein
Synthesis, Allowing the Formation of Short Peptides

All new semi-synthetic CAM-Cn-TPP compounds were expected to bind and act on
bacterial ribosomes by inhibiting protein synthesis, which is similar to CAM-C4-TPP and
the PTC-targeting parent antibiotic CHL. To assess the affinity of CAM-C10-TPP and CAM-
C14-TPP for the bacterial 70S ribosome (Figure 2A), a competition-binding assay exploiting
BODIPY-labeled erythromycin (BODIPY-ERY) was used [47,52,53]. CAM-C10-TPP was
found to have significantly greater (~7-fold) affinity to the ribosome, compared to the
parent CHL, and a slightly greater affinity (~1.5-fold), compared to CAM-C4-TPP (KDapp =
0.4 ± 0.04 µM for CAM-C10-TPP vs. 2.8 ± 0.4 µM for CHL; and KDapp = 0.61 ± 0.07 µM
for CAM-C4-TPP [51]). Unexpectedly, CAM-C14-TPP binds to the 70S ribosome with a
significantly lower affinity, compared to other CAM-Cn-TPPs (~60-90-fold) and CHL (~13-
fold, KDapp = 36 ± 9 µM for CAM-C14-TPP). It is likely that in the case of CAM-C14-TPP,
the linker may be too long, preventing the optimal positioning of the TPP moiety in the
NPET. Thus, CAM-C10-TPP and CAM-C14-TPP bind to the bacterial ribosome. However,
their affinity strongly depends on the length of the linker connecting the two chromophores.
Among the three CAM-Cn-TPPs, the C10-linker was optimal in terms of its ability to bind
to the 70S ribosome.
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2 

 

 

  Figure 2. Binding affinity to bacterial ribosomes and the inhibition of protein synthesis by CAM-C10-TPP and CAM-
C14-TPP. (A) A competition-binding assay to test the displacement of fluorescently labeled analogs of the erythromycin,
BODIPY-ERY, from E. coli 70S ribosomes in the presence of increasing concentrations of CHL (black circles), CAM-C10-
TPP (red squares), CAM-C14-TPP (blue rhombus), decyl(triphenyl)phosphonium bromide (C10-TPP, green triangles), or
tetradecyl(triphenyl)phosphonium bromide (C14-TPP, purple triangles), measured by fluorescence anisotropy. All reactions
were repeated four times. Error bars represent the standard deviation. The resulting values for the apparent dissociation
constants (KDapp) are shown on the plot. (B) Testing of the CAM-C10-TPP and CAM-C14-TPP activity using E. coli BW25113
∆tolC pDualrep2 reporter strain. The induction of the red fluorescent protein expression (green halo around the inhibition
zone, pseudocolor) is triggered by DNA-damage, while the induction of Katushka2S protein (red halo) occurs in response
to ribosome stalling. Levofloxacin (LEV), erythromycin (ERY), chloramphenicol (CHL), N-acetyl-chloramphenicol amine
(CAM-Ac), C10-TPP, and C14-TPP are used as the controls. (C) The inhibition of protein synthesis by 30 µM of CHL,
CAM-C10-TPP, or CAM-C14-TPP in vitro in the cell-free bacterial (black columns) and eukaryotic (transparent columns)
transcription–translation coupled system. The relative enzymatic activity of in vitro synthesized firefly luciferase is shown.
The error-bars represent the standard deviations of the mean of three independent measurements. (D) Ribosome stalling by
CAM-Cn-TPP on trpL mRNA in comparison with CHL, as detected by a reverse-transcription primer-extension inhibition
(toeprinting) assay in a cell-free translation system. The nucleotide sequences of trpL mRNA and their corresponding amino
acid sequences are shown on the left. The black arrowhead marks the translation arrest at the start codon, while the colored
arrowheads point to drug-induced arrest sites within the coding sequences of the mRNAs used. Note that due to the large
size of the ribosome, the reverse transcriptase used in the toeprinting assay stops 16 nucleotides downstream of the codon
located in the P-site.

Next, we tested the effects of CAM-C10-TPP and CAM-C14-TPP in bacterial cells using
an E. coli ∆tolC-based reporter system, which is designed to screen inhibitors targeting
either protein synthesis or DNA replication [54]. In this reporter system, the gene of the
far-red fluorescent protein, katushka2S, is inserted downstream of the genetically modified
tryptophan attenuator, making it possible to express Katushka2S only upon exposure
to ribosome-stalling compounds (Figure 2B, CHL and ERY, red pseudocolor rings). The
red fluorescent protein gene rfp is placed under the control of the SOS-inducible sulA
promoter, allowingthe expression of the Red Fluorescent Protein (RFP) reporter to be
determined under the action of appropriate compounds such as DNA gyrase inhibitors
(e.g., levofloxacin, LEV, Figure 2B, green pseudocolored rings).
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We used chloramphenicol amine (CAM), N-acetyl-chloramphenicol amine (CAM-Ac),
and alkyl-TPP (C10-TPP and C14-TPP) as negative controls in this assay. We observed nei-
ther the induction of either of the two reporters (no colored rings) nor the inhibition of cell
growth by CAM or CAM-Ac (no dark zone in the middle). This indicates that the removal
of the two Cl atoms from the dichloroacetyl group of CHL makes it inactive [55]. The
C10-TPP and C14-TPP compounds (lacking the CAM moiety) inhibit bacterial cell growth
(dark area in the middle) but do not induce either of the two reporters, suggesting that they
act through an entirely different cellular target (likely targeting the membrane [17]). For
CAM-C10-TPP and CAM-C14-TPP, as well as for the positive controls, CHL and ERY, red
pseudocolor rings are observed due to the expression of the fluorescent protein, Katushka2S
(but not RFP), indicating that these compounds specifically inhibit protein synthesis, as
was previously observed for CAM-C4-TPP [51].

The next step was to test the new CAM-Cn-TPP compounds for their ability to inhibit
the synthesis of the firefly luciferase reporter in vitro in a cell-free transcription-translation
system based on an E. coli S30 extract. CAM-C10-TPP, like CAM-C14-TPP, inhibits bacterial
translation, which is similar to CHL (Figure 2C) and CAM-C4-TPP [51]. At the same
time, both CAM-C10-TPP and CAM-C14-TPP had no effect on eukaryotic in vitro transla-
tion (Figure 2C), which was revealed by a similar approach using the eukaryotic in vitro
translation system.

Recently, it was shown that the mechanism of action of CHL on translation is different
from what was previously widely accepted (blocking the accommodation of the incoming
aminoacyl-tRNA in the PTC): in the presence of CHL, short peptides can be synthesized on
the ribosome, and the action of the antibiotic is context-specific [56]. CHL arrests translation
only when alanine and, to a lesser extent, serine or threonine appear in the penultimate
position (E site) of the growing polypeptide chain and only if there is no glycyl-tRNA in
the A site of the ribosome [56]. As shown in our recent study, the action of CAM-C4-TPP in
bacterial translation was also context-specific, but its mode of action was different from the
site-specific action of CHL [51].

To investigate the mechanism of action of CAM-C10-TPP and CAM-C14-TPP in the
translation process, a primer extension inhibition assay (toeprinting) was used. This
method allows for the unambiguous identification of drug-induced ribosome stalling sites
along the mRNA, with single-nucleotide precision [57]. This technique is also used to
determine the context-specificity of antibiotic action [56]. For this experiment, trpL mRNAs
were chosen as the template, as in the pDualrep2 reporter system. In contrast to CHL,
which stalls ribosomes at the Ile4 codon (Figure 2D and Figure S1, blue arrowhead) of the
corresponding Ala3 in the penultimate position of the growing polypeptide chains (E-site),
CAM-C10-TPP, CAM-C14-TPP, and CAM-C4-TPP blocked the ribosome progression at
Val6 (Figure 2D, red arrowhead) and slightly blocked it at Ile4. Compared to the results
obtained previously for CAM-C4-TPP using rst1 and rst2 mRNA templates [51], more
unambiguous results were obtained using a trpL mRNA template. The main drug-induced
ribosome stalling sites are different for CHL and CAM-Cn-TPP, and there are also CAM-Cn-
TPP-specific stalling positions. These results support the conclusion that CAM-Cn-TPPs
have an idiosyncratic mode of action and a unique context-specificity that differs from that
of the original CHL [51].

2.3. Possible CAM-Cn-TPPs Interaction Dynamics during Translation

To assess the possible interactions of CAM-Cn-TPPs with the ribosome during trans-
lation, we modeled the structures of complexes of the new compounds, CAM-C10-TPP
and CAM-C14-TPP, with the E. coli 70S ribosome using molecular dynamics simulations.
To this end, we used the structure of the E. coli 70S ribosome in the classical non-rotated
a/A-p/P-state, which is conformationally similar to the ribosome containing tRNAs during
translation [58]. Analysis of the most populated clusters (Figure 3, Table S1) for CAM-Cn-
TPP complexes revealed that all these compounds are able to interact quite stably with the
non-canonical CHL binding site [59]. The CAM-C10-TPP complex is characterized by the
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most stable stacking interactions and hydrogen bonding and is similar to the analogous
CHL complex. Obviously, the positive charge of the TPP fragment is responsible for the
nonspecific affinity of all CAM-Cn-TPPs to the negatively charged rRNA.

 

3 

 

 

  
Figure 3. Interactions between CAM-C10-TPP (A), CAM-C14-TPP (B), and E. coli A,A/P,P–ribosome, obtained using
MD simulations. Hydrogen bonds are shown by black dashes. CAM-Cn-TPP nitrophenyl fragment is immersed in the
“hydrophobic cavity” formed by the Ψ2504 and U2506 bases, forming stacking interactions with them. The arrangement of
hydrogen bonds for the CAM-C10-TPP complex (A) corresponds to the non-canonically linked CHL [59]. For CAM-C14-TPP
(B), a stable hydrogen bond between the O1-hydroxyl group of the CAM residue and O6 of G2061 is observed. The TPP
fragment of CAM-C10-TPP interacts with the “hydrophobic cavity” of the macrolide binding site, forming developed
hydrophobic contacts with the A2058, A2059, and C2610 bases. The long C14-linker in CAM-C14-TPP appears in the
“hydrophobic cavity” between the A2058 and A2059 bases, and the TPP fragment is located deeper in the NPET adjacent to
the residue, A2015. (C) The energy of the noncovalent interactions between CAM-C10-TPP (red columns) or CAM-C14-TPP
(green columns) and the neighboring 23S rRNA residues of the E. coli ribosome, which are in the canonical A,A/P,P–state.
Enoncov is shown with a negative sign for improved readability.

CAM-Cn-TPPs were constructed as bidentate ligands, differing in the length of the
flexible alkyl chain linking CAM- and TPP- moieties. The synergism of the interactions
of these two basic structural elements with one or the other region of the NPET depends
on the length of the CAM-Cn-TPP linker. Thus, the relatively long and flexible alkyl chain
of CAM-C10-TPP allows the CAM and TPP residues to adapt to their binding sites in the
NPET (Figure 3A,B). On the contrary, the longer linker in the CAM-C14-TPP structure
results in the inability of this compound to fit snugly in the space between the optimally
bound CAM and TPP fragments. These findings may explain the higher affinity of the
CAM-C10-TPP to the bacterial ribosomes, compared to the CAM-C14-TPP.
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It is noteworthy that models of CAM-Cn-TPPs complexes with the E. coli ribosome
in the canonical A,A/P,P–state described above are in agreement with the foregoing data
on translation arrest in the presence of CAM-C10-TPP and CAM-C14-TPP (Figure 2D) or
CAM-C4-TPP, as described in [51]. For all three mRNA templates, trpL for CAM-C10-TPP
and CAM-C14-TPP, and trpL, rst1, and rst2 for CAM-C4-TPP, the peptides synthesized
before arrest contain sequences corresponding to the −2 to −5 codon regions (2 to 5 amino
acid residues from the C-terminus of the nascent peptide), consisting of amino acids mainly
with hydrophobic and aromatic side groups, which may be near CAM-Cn-TPP during
translation in NPET. These positions are occupied by the A−4IF−2 in the case of trpL,
W−5VT−3 in the case of rst1, and F−5AI−3 in the case of rst2 templates. Obviously,
these amino acids are capable of forming hydrophobic contacts with the TPP residue of
CAM-Cn-TPP, so that the nascent peptide can bind firmly in the NPET, thus hindering
translation.

2.4. CAM-Cn-TPP Cause a Decrease in the Membrane Potential of B. subtilis

As noted in the Introduction, alkyl-TPPs and their derivatives exhibit an antibacterial
effect, which is associated with a decrease in the membrane potential of bacteria [17,22,23].
Thus, we further examined the effect of CAM-Cn-TPP on the bacterial membrane potential
of B. subtilis. In particular, the membrane potential of B. subtilis can be estimated from
the fluorescence of the potential-sensitive dye, DiS-C3-(5), by measuring the changing
fluorescence. The potential-dependent accumulation of the dye inside the bacterial cell
causes quenching and leads to a decrease in fluorescence. Under the influence of substances
that reduce the membrane potential, the dye is released and the fluorescence increases. As
shown in Figure 4, submicromolar concentrations of CAM-C10-TPP and CAM-C14-TPP
caused a decrease in the membrane potential of B. subtilis on a minute time scale, whereas
10 µM of CAM-C10-TPP or CAM-C14-TPP caused a rapid drop in the membrane potential
to the level observed with the channel-forming antibiotic gramicidin A, which is known
to cause the membrane potential of bacteria to vanish, whereas CAM-C4-TPP only takes
effect at high (10 µM or more) concentrations. Therefore, the action of CAM-Cn-TPP may
have a double effect on bacterial cells and be based on the depolarization of the bacterial
membrane by analogy with the mechanism of action of Cn-TPP [17].

2.5. CAM-C10-TPP and CAM-C14-TPP Inhibit Bacterial Growth

In order to check whether the synthesized compounds are antimicrobial agents, we
tested their action on a number of bacterial species (Tables 1, 2 and S2). Both CHL and
alkyl-TPPs are known to act on Gram-positive bacteria [17,49]. CAM-C10-TPP and CAM-
C14-TPP were found to be able to inhibit the growth of the S. aureus, L. monocytogenes, B.
subtilis, and Mycobacterium sp. strains. Moreover, CAM-C10-TPP suppressed the bacterial
growth more effectively than CHL, depending on the strain (Table 1). CAM-C10-TPP was
also found to inhibit CHL-resistant E. coli strains (Table S2).

Table 1. Suppression of the growth of Gram-positive bacteria by CAM-Cn-TPPs. Values of the
minimal inhibitory concentration (MIC, µM) are shown 1.

Staphylococcus
aureus

Listeria
monocytogenes

Bacillus
subtilis

Mycobacterium
smegmatis

CHL 60 25 12 6
CAM-C10-TPP 5 6 2 2
CAM-C14-TPP 12 17 12 8

C10-TPP 2 5 2 <2
C14-TPP 1.6 2 8 4

1 MIC values were determined using the double-dilution method. The MIC for each compound was determined
in triplicate in two independent sets.
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Table 2. Suppression of the growth of E. coli strains, with the deletion of the tolC gene and the
harboring CHL acetyltransferase (cat) gene (E.coli ∆tolC-CAT) or B. subtilis CHL-resistant strains
(B. subtilis pHT01-cat) and the harboring methyltransferase Cfr (cfr) gene (B. subtilis pHT01-cfr) by
CAM-Cn-TPPs. The values of a minimal inhibitory concentration (MIC, µM) are shown 1.

E. coli
∆tolC

E. coli
∆tolC-CAT

Bacillus
subtilis

B. subtilis
pHT01-cat

B. subtilis
pHT01-cfr

CHL 2.8 >360 12 180 90
CAM-C10-TPP 3 25 2 6 6
CAM-C14-TPP 12.5 12.5 12 12.5 6

C10-TPP 3 3 2 1.6 0.8
C14-TPP 1.6 6 8 1.6 0.8

1 The MIC values were determined using the double-dilution method. The MIC for each compound was
determined in triplicate in two independent sets.

 

4 

 

 

  
Figure 4. Dose-dependent effect of CAM-Cn-TPP on the kinetics of the membrane potential of B. subtilis cells, as assessed by
DiS-C3-(5) (10 µM) fluorescence in a PBS buffer. To reach the desired concentrations, appropriate amounts of CAM-Cn-TPP
were added at different moments, which are marked by the arrows. The Gramicidin A concentration was 0.5 ng/mL.

These findings prompted us to further investigate the antibacterial activity of CAM-
Cn-TPP on CHL-resistant strains of B. subtilis and E. coli, with the tolC genes deleted, which
are more sensitive to the action of compounds that might otherwise be pumped out of the
Gram-negative bacterial cells by the TolC efflux pump. AcrAB-TolC is the main multi-drug
resistance transporter of Gram-negative bacteria, which is responsible for the efflux of
C10-TPP derivatives [18,60]. Apparently, the efflux of CAM-Cn-TPP is also mediated by
this transporter, but the degree of involvement of other TolC-containing transporters in
CAM-Cn-TPP efflux has not yet been clearly defined.

E. coli ∆tolC CHL-resistant strain harboring plasmid encoding for chloramphenicol
acetyltransferase (cat) (pCA24N-LacZ) and the control E. coli ∆tolC strain was used to
evaluate the inhibitory effect of the compounds. CHL-resistant strains of B. subtilis pHT01-
cat and B. subtilis pHT01-cfr were prepared by means of a transformation of a B. subtilis 168
strain with plasmids harboring the cat and cfr genes (chloramphenicol-florfenicol resistance)
gene. The cfr gene encodes for the methyltransferase, which catalyzes the methylation
of m2A2503 in the 23S rRNA and causes resistance to a variety of ribosome-targeting
antibiotics that bind in the A site of the bacterial ribosome [61].
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As follows from the data in Table 2, CAM-C10-TPP inhibited the growth of E. coli
∆tolC strain with the same efficiency as CHL, and CAM-C14-TPP inhibited it with a slightly
lower efficiency. In contrast, CAM-Cn-TPPs were significantly more effective against
CHL-resistant strains in comparison with CHL. At the same time, the MIC values for
Cn-TPP on all tested strains were lower than those for CAM-Cn-TPPs. A similar effect was
observed for CHL-resistant B. subtilis because of the presence of the cat or cfr genes. While
CAM-Cn-TPPs clearly inhibit protein biosynthesis in bacteria in vitro, damage to bacterial
membranes due to the presence of an alkyl-TPP fragment in their structure contributes
more to the action of CAM-Cn-TPPs at the cellular level.

If we compare the TPP analogs of CHL with the nearest structural analogs exhibiting
antimicrobial activity, in which two pharmacophores are conjugated through the alkyl
linker, we can note that the antibacterial effect of these compounds is due to the fact that
they either bind to bacterial ribosomes or inhibit translation in bacteria, like polyamide
analogs of CHL [49,50], or disrupt the membrane potential of bacteria, since the alkyl TPP
conjugates with fluorescein [22,23] or coumarin [20,21], while CAM-Cn-TPPs can exhibit
both these effects.

2.6. CAM-C10-TPP and CAM-C14-TPP Show a Reduced Toxicity Compared to Alkyl-TPP on
Mammalian Cells

As we have already shown, CAM-Cn-TPPs have no noticeable effect on the eukaryotic
translation process (Figure 2C). Given the obvious antibacterial activity of CAM-C10-TPP
and CAM-C14-TPP, it was important to assess their cytotoxicity for mammalian cells. The
Mosman (“MTT”) assay was used for this purpose [62].

CAM-C10-TPP and CAM-C14-TPP are more toxic to various eukaryotic cell lines
in comparison to CHL (Table 3), but at the same time, they are significantly less toxic
than the well-known cytotoxic drug doxorubicin, which we used as a highly toxic control.
Notably, CAM-Cn-TPPs were less toxic than the corresponding alkyl-TPPs, which are part
of the molecular structures of these analogs, and were also used (as bromides) as control
compounds. Alkyl-TPPs are known to be quite toxic, and the toxicity effect seems to be
mainly due to their ability to accumulate in mitochondria [63,64]. On the other hand, this
effect may be caused by a decrease of cellular metabolism under the influence of TPP
derivatives, which may be a consequence of a charge change on the cell membrane, i.e., the
same effect that provides them with antibacterial properties [24–26].

Table 3. Growth inhibition by CAM-Cn-TPPs in relation to a number of cell lines according to the
MTT assay. Values of a 50% growth inhibition concentration (GI50, µM) are shown.

HEK293T MCF7 A549 VA13

CHL >50 >50 >50 >50
CAM-C10-TPP 0.62 ± 0.04 1.0 ± 0.1 0.7 ± 0.1 2.8 ± 0.5
CAM-C14-TPP 3.6 ± 0.5 5.8 ± 0.8 2.9 ± 0.4 5.2 ± 0.9

C10-TPP 0.08 ± 0.01 0.21 ± 0.03 0.07 ± 0.01 0.27 ± 0.05
C14-TPP 0.03 ± 0.02 0.02 ± 0.01 0.025 ± 0.009 0.07 ± 0.05

Doxorubicin 0.007 ± 0.001 0.04 ± 0.01 0.04 ± 0.01 0.18 ± 0.04

The relatively high toxicity of CAM-Cn-TPP to human adenocarcinoma cells (MCF7
and A549, Table 3) may indicate that these compounds can be used as antiproliferative
agents. CAM-C10-TPP and CAM-C14-TPP have approximately 4–2 times the selectivity of
action for A549 and noncancerous VA13 cell lines. These results are consistent with previous
reports [65,66] that showed that delocalized lipophilic cation-containing compounds may
have selective cytotoxicity against cancer cells. Otherwise, their selectivity against cancer
cell lines was lacking, compared to the HEK293T cells of a noncancerous etiology, but they
are compatible with the growth rate of cancer cells.
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2.7. Anticancer Activities of CAM-C10-TPP and CAM-C14-TPP

We recently provided in vivo [67] and in vitro [68] evidence that certain bactericidal
antibiotics suppress tumor growth by inducing mitochondrial dysfunction. Our results
showed that antibiotics preferentially suppress the growth of cancer chemoresistant and
the so-called cancer stem cells (CSC), two major categories of cells responsible for cancer
recurrence and metastasis [41]. These cells differ from the corresponding parental cells and
display a different response to the same microenvironmental stimuli, allowing them to
reduce their proliferating rate and survive chemotherapeutic treatment. Here, we tested
the abovementioned CAM-TPP derivatives on chemoresistant triple negative breast cancer
(TNBC) cell models, as well as on corresponding CSC-like spheroid cells. We created
several relevant models based on TNBC cell lines, particularly MDA-MB-231 and BT-549,
to determine their resistance to cyclophosphamide. To create CSC-like cells, parental
cells were resuspended in nonadherent conditions to form tumorspheres. We applied
TPP derivatives and found that both CAM-C10-TPP and CAM-C14-TPP, but not CAM-
C4-TPP, significantly reduced the proliferation of TNBC cell lines (Figure 5). We also
noticed that higher concentrations of derivatives preferentially inhibited the proliferation
of chemoresistant rather than parental cancer cells.

Several TPP-containing compounds have been proposed for the elimination of CSCs
by the Lisanti group [39]. In the current work, we studied the effect of CAM-TPP deriva-
tives on CSC-like TNBC cell models. We found a significant decrease in spheroid formation
when exposed to CAM-C10-TPP (also to CAM-C14-TPP) (Figure 6A,E). The same com-
pounds reduced the survival of CSCs formed from parental and resistant TNBC cell lines
(Figure 6B–D,F–H).

We also compared the effects of the obtained compounds on the suppression of normal
cell growth. The preliminary results with CAM-C10-TPP showed that normal human
fibroblasts were less affected by submicromolar concentrations of CAM-TPP derivatives
than cancer cells (Figure S3). This suggests a pharmacological window to discriminate
between healthy and cancer cells.

 

5 

 

 

  Figure 5. Effect of CAM-TPP derivatives on the cell viability of TNBC cells. MDA-MB-231 (A–D) and BT-549 (E–H)
TNBC-sensitive (S) and chemoresistant (R) cells were grown at a 60% confluence for 3 days with the indicated concentrations
of CAM-TPP derivatives. Representative images (A,E) were obtained at 40×magnification. The scale bar is 10 µm. Cells
were subjected to viability assays. The results represent the mean of 3 independent experiments. The data indicate the mean
± SEM. The p-values, all relative to controls, were statistically significant (p < 0.05).

It should be noted that antiproliferative activity was also detected in TPP and Cn-TPP
itself, which seems to be related to the depolarization of the mitochondrial membrane
potential [27–30]. In this regard, we consider these data on the use of CAM-Cn-TPP
derivatives as one of the possible approaches to anti-cancer therapy, requiring more careful
study and titration of concentrations and doses. Overall, our data suggest that specific
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targeting of cancer cell mitochondria with dual-acting compounds may have clinical
advantages for drug development against resistant forms of cancer.

 

6 

 
 Figure 6. Effect of CAM-TPP derivatives on the cell viability of CSC-like TNBC cells. MDA-MB-231 (A–D) and BT-549 (E–H)

TNBC-sensitive (S) and chemoresistant (R) cells were grown under non-adherent conditions for 5 days in the presence of
CAM-TPP derivatives to form spheroids. Representative images (A,E) of CAM-C10-TPP-treated cells show a decrease in
spheroid size. CSC-like cells were then tested for viability as before. The results are the mean of 3 independent experiments.
The data indicate the mean ± SEM. The p-values, all relative to controls, were statistically significant (p < 0.05).

3. Materials and Methods
3.1. Chemicals and Materials

The following reagents were used: chloramphenicol (Sigma, Steinheim, Germany),
1-hydroxysuccinimide (HOSu), N,N′-dicyclohexylcarbodiimide (DCC), 4-aminobutyric
acid (GABA), triphenylphosphine, and 11-bromundecanoic acid (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany). The fluorescent erythromycin derivative, BODIPY-Ery, was
obtained previously [69]. The alkyl-TPPs were obtained according to [17].

3.2. Synthetic Procedures

The scheme for the synthesis of chloramphenicol triphenyphosphonium analogs
(CAM-C10-TPP and CAM-C14-TPP) is represented in Figure 1. (1R,2R)-2-amino-1-(4-
nitrophenyl)propane-1,3-diol (chloramphenicol amine, CAM, 2) was obtained via the acid
hydrolysis of chloramphenicol (CHL, 1), according to a procedure [55] described in [47,53].
(10-carboxydecyl)(triphenyl)phosphonium bromide (5) was obtained by the condensation
of 11-bromoundecanoic acid (3) and triphenylphosphin (4) for 12 h at 85 ◦C.

(N-{[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]amino}-11-oxoundecyl)(triphenyl)
phosphonium bromide (CAM-C10-TPP). To a cold solution of 140 mg (0.25 mmol) of (10-
carboxydecyl)(triphenyl)phosphonium bromide (5) and 30 mg (0.25 mmol) of HOSu in
5 mL of anhydrous CH2Cl2, 62 mg (0.3 mmol) of DCC was added at 0 ◦C. The mixture was
stirred for 2 h at 0 ◦C and overnight at RT. The formed precipitate was filtered off, and the
solvent was removed in vacuo. The residue was dissolved in 1 mL of DMF, then 62.5 mg
(0.25 mmol) of CAM (2), and 52.8 µL (0.375 mmol) of DIPEA in 250 µL of DMF was added,
and the resulted mixture was stirred for 5 h at RT and overnight at 4 ◦C. Then, the reaction
mixture was diluted with 15 mL of water, and 1N aqueous HCl was added dropwise to a
neutral pH. The mixture was then extracted with CHCl3 (3 × 15 mL), and the combined
organic extracts were washed with water (3 × 10 mL). The organic layer was dried over
anhydrous Na2SO4, and the volatiles were evaporated in vacuo. The target product was
isolated from residue by purification on a silica gel column eluting with a solvent system of
CHCl3:MeOH, 6:1. Yield: 123 mg (73%); TLC: Rf (CHCl3:MeOH, 6:1) 0.3, Rf (CH3Cl:MeOH,
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9:1) 0.26; LC-MS m/z calculated for C38H46N2O5P (M)+: 641.3, found 641.4; tR = 1.08 min;
and ESI-MS m/z calculated for C38H46N2O5P (M)+: 641.3133, found 641.3149.

N-[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]-4-(triphenyl)phosphoniumundecan
amidobutamide bromide (CAM-C14-TPP) was obtained as CAM-C10-TPP from 263 mg
(0.5 mmol) of (10-carboxydecyl)(triphenyl)phosphonium bromide (5), 58 mg (0.5 mmol)
of HOSu, 103 mg (0.5 mmol) of DCC, 200 mg (0.5 mmol) of GABA-CAM·TFA (6), and
253 µL (1.42 mmol) of DIPEA. The target product was isolated on a silica gel column eluting
with a solvent system of CHCl3:MeOH:NH4OH = 65:25:4. Yield: 261 mg (65%); TLC: Rf
(CHCl3:MeOH, 5:1) 0.53; Rf (CHCl3:MeOH:NH4OH, 65:25:4) 0.7; LC-MS m/z calculated
for C42H53N3O6P (M)+: 726.4, found 726.7; tR = 0.50 min; and ESI-MS m/z calculated for
C42H53N3O6P (M)+: 726.3667, found 726.3692.

See also the Supplementary Materials for more detailed procedures, characteristics,
and NMR-data.

3.3. In Vitro Binding Assay

The binding affinity of CAM-Cn-TPP to E. coli ribosomes was analyzed by a competition-
binding assay using the fluorescently-labeled BODIPY-ERY, as described before [47,52,53,69].
BODIPY-Ery (16 nM) was incubated with the ribosomes (50 nM) in the buffer containing
20 mM HEPES-KOH (pH 7.5), 50 mM NH4Cl, 10 mM Mg(CH3COO)2, 4 mM mercap-
toethanol, and 0.05% Tween-20 for 30 min at 25 ◦C. Solutions of CHL, CAM-Cn-TPP, and
CnTPP in different concentration ranges were added to the formed complex. The mixture
was incubated for 2 h, until an equilibrium was reached, and the values of fluorescence
anisotropy were measured by VICTOR X5 Multilabel Plate Reader (Perkin Elmer, Waltham,
MA, USA). The dissociation constants were calculated based on the assumption of the
equilibrium competitive binding of two ligands at a single binding site, as described in [70].

3.4. Detection of the Translation Inhibitors with a pDualrep2 Reporter

Reporter strain JW55035 [71] ∆tolC (BW25113) pDualrep2 was used, as previously
described [72]. The tested antibiotics, CAM-C10-TPP (10 mM, 1.5 µL), CAM-C14-TPP (10
mM, 1.5 µL), C10-TPP (10 mM, 1.5 µL), C14-TPP (10 mM, 1.5 µL), CAM (10 mM, 1.5 µL),
CAM-Ac (10 mM, 1.5 µL), chloramphenicol (CHL, 2 mM, 1 µL), erythromycin (Ery, 7 mM,
1 µL), and levofloxacin (Lev, 70 nM, 1 µL), were applied to an agar plate that already
contained a lawn of the reporter strain. After being incubated overnight at 37 ◦C, the plate
was scanned by ChemiDoc (Bio-Rad) in the modes, “Cy3-blot” for RFP and “Cy5-blot” for
Katushka2S.

3.5. In Vitro Translation Inhibition Assay and Toeprinting Assays

The inhibition of firefly luciferase synthesis in cell-free translation systems by CAM-
Cn-TPP was tested with an E. coli S30 Extract System for Linear Templates (Promega,
Madison, MI, USA). The reactions were programmed with 100 ng of mRNA and were
carried out in 5 µL aliquots at 37 ◦C for 30 min. The activity of in vitro synthesized
luciferase was assessed using 5 µL of the substrate from the Steady-Glo Luciferase Assay
System (Promega).

The inhibition of eukaryotic translation was measured in Rabbit Reticulocyte Lysate
(Promega) according to the manufacturer’s protocol. The reactions were programmed with
100 ng of Fluc mRNA and were carried out in 5 µL aliquots at 37 ◦C for 30 min. The activity
of the in vitro synthesized luciferase was assessed using 5 µL of the substrate from the
Steady-Glo Luciferase Assay System (Promega).

The toeprinting assay was carried out using trpL mRNA as a template, as described
in [73], and the reactions were preincubated for 5 min with 30 µM of the tested compound.
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3.6. Bacteria Inhibition Assays
3.6.1. Bacterial Strains

To prepare the bacterial suspension, bacterial stock cultures were sub-cultured onto
plates with the proper agar medium and incubated overnight at 30 ◦C or 37 ◦C, until
reaching the optical density of 1.5 (at 600 nm), which was measured on a Varioskan
LUX microplate reader (Thermo Scientific, Waltham, MA, USA) or an Ultrospec 1100 pro
spectrophotometer (Amersham Biosciences Corp., Piscataway, NJ, USA).

Standard laboratory strains of Bacillus subtilis subs. subtilis Cohn 1872, stains BR151,
and 168, Staphylococcus aureus subsp. aureus Rosenbach 1884 strains JCM 2151 and en-
try MC#144 (from the Microorganisms Collection of the Moscow State University), Lis-
teria monocytogenes Pirie 1940, Mycobacterium smegmatis Lehmann and Neumann 1899
(MC#377), and Escherichia coli Castellani and Chalmers 1919, strain JW5503 (with the dele-
tion of tolC gene), which are resistant to the chloramphenicol strains, J53rif, C600rif/pIB55-1,
C600rif/pIP162-1, and C600recA naI, were used.

S. aureus was grown in Bacto Tryptic Soy Broth, L. monocytogenes in Brain Heart
Infusion Broth, and E. coli in LB. Bacterial cells were grown at 30 ◦C or 37 ◦C in the
appropriate medium at a 140 rpm shaking frequency.

A standard laboratory strain of E. coli JW5503, with the deletion of the tolC gene,
referred to here as the ∆tolC strain, was used to obtain the ∆tolC pCA24N-LacZ strain
by means of transformation with the plasmid pCA24N-LacZ-harboring chloramphenicol
acetyltransferase (cat) gene.

A standard laboratory strain of B. subtilis 168 was used to obtain the CHL-resistant
strains, B. subtilis pHT01-CAT and B. subtilis pHT01-cfr, by means of transformation with
the corresponding plasmids. Competent cell preparation and transformation procedures
were conducted, as reported in [74,75]. The desired colonies were selected at 10 µg/mL of
CHL for B. subtilis pHT01 and 5 µg/mL or 3.2 µg/mL of CHL for B. subtilis pHT01-cfr.

3.6.2. Plasmids

The pcan24N-lacZ was purified from the JW0335 strain (ASKA-collection), pHT01
(was kindly provided by Dr. Svetlana Dubiley), and the pHT01-cfr plasmid was obtained
by the following procedure. The whole pHT01 plasmid sequence was amplified with the
primers, 5′-TTGATATGCCTCCTAAATTTTTATC-3′ and 5′-TATGAGATAATGCCGACTG-
3′. The cfr gene was amplified with the primers, 5′-acagtcggcattatctcataCTATTGGCTATTTT
GATAATTACC-3′ and 5′-aaatttaggaggcatatcaaATGAATTTTAATAATAAAACAAAGTATG
G-3′, using the Staphylococcus sp. (cfr+) genome DNA as a template. The joining of the
two DNA fragments was performed with the NEBuilder HiFi DNA Assembly Master Mix
(NEB), and subsequently, the right clones were selected.

3.6.3. CAM-Cn-TPP-Dependent Bacterial Growth Suppression Screening of
TolC-Requiring Transporters

The E. coli deletion mutants’ panel [18,60] was selected. The selected bacterial strains
belonging to the panel were diluted in fresh LB media after overnight growing, and 200 µL
of bacterial cell cultures (5 × 105 cells/mL) were inoculated into 96-well plates. The
preselected CAM-C14-TPP and CAM-C10-TPP concentrations (5 µM, 10 µM, and 20 µM)
were added to each mutant, and the optical density at 620 nm was measured using a
Thermo Scientific Multiskan FC plate reader. The cells were left to grow for 21 h at 37 ◦C,
and the optical density at 620 nm was measured. All experiments were performed at least
in triplicates.

3.6.4. MIC Determination

The MICs for CAM-Cn-TPP and Cn-TPP were determined by Mueller-Hinton broth
microdilution, as recommended by CLSI in the Methods for Dilution Antimicrobial Sus-
ceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI
document M07-A9, using in-house-prepared panels. The compounds were diluted in a
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96-well microtiter plate to final concentrations ranging from 0.5 to 360 µM in a 250-µL
aliquot of the bacterial suspension, followed by incubation at 37 ◦C or 30 ◦C for 18 h.
The MIC was determined as the lowest concentration that completely inhibited bacterial
growth. The bacterial growth was observed visually alongside OD measurements. The
experiments were carried out in triplicate.

3.7. Measurement of the B. subtilis Membrane Potential

The membrane potential of B. subtilis was estimated by measuring the fluorescence of
the potential-dependent probe, DiS-C3-(5) [76]. B. subtilis from the overnight culture were
seeded into a fresh LB medium, followed by growth for 24 h, until reaching the optical
density of 0.8 at 600 nm. Then, the bacteria were diluted 20-fold in a buffer containing
100 mM of KCl and 10 mM of Tris, pH 7.4. The fluorescence was measured at 670 nm
(excitation at 630 nm) using a Fluorat-02-Panorama fluorimeter.

3.8. In Vitro Survival Assay (MTT Assay)

The cytotoxicity of the tested substances was tested using the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay [62], with some modifications, and 2500 cells
per well for the MCF7, HEK293T, and A549 cell lines or 4000 cells per well for the VA-13 cell
line were plated in 135 µL of DMEM-F12 media (Gibco, Waltham, MA, USA) in a 96-well
plate and incubated in the 5% CO2 incubator for first 16 h, without treatment. Then, 15 µL
of media-DMSO solutions of the tested substances was added to the cells (the final DMSO
concentrations in the media were 1% or less) and treated cells for 72 h with 25 nM–50
µM (eight dilutions) of our substances (triplicate each), and serial DMSO dilutions and
doxorubicin were used as controls. The MTT reagent (Paneco LLC, Moscow, Russia) was
then added to cells to a final concentration of 0.5 g/L (10× stock solution in PBS was used)
and incubated for 2.5 h at 37 ◦C in the incubator under an atmosphere of 5% CO2. The
MTT solution was then discarded, and 140 µL of DMSO (PharmaMed LLC, Krasnodarsky
Krai, Russia) was added. The plates were swayed on a shaker (60 rpm) to dissolve the
formazan. The absorbance was measured using a microplate reader (VICTOR X5 Light
Plate Reader, PerkinElmer, Waltham, MA, USA) at a wavelength of 565 nm (in order to
measure formazan concentration). The results were used to construct a dose-response
graph and to estimate the CC50 value.

3.9. Cancer Cell Proliferation Assays
3.9.1. Cell Lines and Tumoursphere Formation

The MDA-MB-231 (RRID: CVCL_0062) and BT-549 (RRID: CVCL_1092) cell lines were
purchased from ATCC and cultured in DMEM/F12 (Gibco, Life Technologies, 31330-038)
supplemented with 10% FBS, 1% Pen-Strep, 1% Sodium Pyruvate, and 1% L-glutamine.
Chemoresistant cell lines were established with continuous treatment for 6 months with
the anticancer therapeutic agent, cyclophosphamide (Rcyclo), as previously described [67].
These cell lines were authenticated using short tandem repeat (STR) profiling within the
last three years. To obtain CSC-like cells, a single cell suspension was prepared using
enzymatic disaggregation (1× Trypsin-EDTA, Gibco, 25300062), and the cells were plated
at a density of 10.000–12.000 cells per ml in a Cancer Stem Cell medium (C-28070, Promo-
Cell, Heidelberg, Germany) in poly-2-hydroxyethyl methacrylate (Poly-HEMA, Santa Cruz
Biotechnology, Dallas, TX, USA, sc-253284)-coated plates. Cells of the first generation (G1)
were collected 10 days after seeding. The cells were transfected with corresponding com-
pounds or DMSO (control), followed by the abovementioned procedure of tumoursphere
formation. The relative numbers of tumourspheres per well were counted manually. The
experiments were performed independently at least 2 times, with several replicates.

3.9.2. Cancer Cell Proliferation

The survival assay was performed essentially as described earlier [77]. In short, cells
were seeded into a 96-well plate, followed by treatment with increasing concentrations
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of the corresponding CAM-TPP derivatives for 3 days. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (0.5 mg/mL MTT; Sigma-Aldrich) dissolved in media was
added to each well. Following incubation for 2 h, the supernatant was carefully removed
from the wells, and 100 µL of a DMSO:ethanol mix (1:1) was added to each well, followed
by shaking for 10 min. The absorbance was measured at 570 nm in Bio Spec 1601, Shimadzu
spectrometer. The OD570 of the DMSO solution in each well was considered to be propor-
tional to the number of cells. The OD570 of the control (treatment without supplement)
was considered to be 100%. The results were expressed as the means ± SEM. The data
were analyzed using the GraphPad Prism 7 PRIZM computer software under the license of
the Statistical Department (Vall’ d Hebron Hospital, Barcelona, Spain).

3.10. Molecular Dynamics Simulations

The structure of the E. coli AP–ribosome modeled in [78] was used. A cubic fragment
was extracted from this structure in the same manner as in the cited work. CAM-Cn-TPPs,
shown in Figure S2 (atom numbering is based on [79]), were docked into this ribosome
fragment using the rDock [80] package, with 1000 runs of the optimization process. Then,
the pose of the sequent CAM-Cn-TPP, which shows the highest predicted affinity to the
ribosome among the other poses of the same compound, was placed in the above-described
fragment of ribosome. The constructed system was centered in a tetragonal cell, with
dimension of 9.1 × 9.1 × 10 nm, so, when it was filled with water, the edges of the
ribosome fragment were covered by a solvent layer that was at least 0.9 nm thick. During
the molecular dynamics simulations, residues with at least one atom located within 0.1 nm
from the edge of the simulated ribosome fragment were positionally restrained. Such
an approach preserves the local conformational movability of rRNA residues, which is
adequate for fitting their conformations to the binding ligand.

The equilibrium molecular dynamics simulation of a 200 ns length was performed for
every constructed system, and the coordinates of the simulated system were recorded every
25 ps, with an integration time step of 2 fs. The lengths of the covalent bonds with hydrogen
atoms were limited by the LINCS algorithm [81]. The velocity rescaling thermostat, with
an additional stochastic term [82] at a constant temperature of 300 K and 0.1 ps coupling
time, was applied during the simulation, and the Berendsen barostat [83], with a 5 ps
coupling time, was used to support the isotropic constant pressure with periodic boundary
conditions. The particle mesh Ewald algorithm, with a 0.125 nm grid step and the fourth
order interpolation, was used to treat long-range electrostatic interactions [84]. TIP4PEW
water was used as a solvent. Potassium ions with optimized parameters [85] were added to
neutralize the residual negative charge of the system, and they were placed near negatively
charged groups [86]. To prevent the elution of magnesium and potassium counterions into
the aqueous phase, part of the water molecules were randomly replaced with magnesium,
potassium, and chlorine ions, setting the concentrations of MgCl2 to 7 mM and KCl to
100 mM.

Canonical and modified amino acid and nucleotide residues were modeled with
parm99sb [87], while CAM-Cn-TPPs were modeled with the GAFF force field [88]. Op-
timized three-dimensional structures and molecular electrostatic potentials of the newly
parameterized residues and compounds were prepared by quantum chemical Hartree-Fock
calculations using the 6–31G* basis set. Partial charges were evaluated with the RESP
model [89].

GROMACS [90,91] software version 5.1.4 was used to simulate the molecular dy-
namics simulations and analyze the obtained trajectories, including an analysis of the
hydrogen bonds and stacking interactions, which were performed in the same way as
in [92], clustering of frames using the GROMOS [93] method, and calculation of the energy
of noncovalent interactions: Enoncov = EVdW + ECoulomb.
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4. Conclusions

Based on our recent findings from the study of CAM-C4-TPP [51], in this work, we set
out to create dual-acting antimicrobial compounds, the structure of which would include
an amphenicol fragment of CHL and a TPP cation, connected by linkers of different lengths
(CAM-Cn-TPP). We synthesized CAM-C10-TPP and CAM-C14-TPP and examined their
ribosomal binding and translational inhibitory properties, as well as their effects on the
bacterial membrane. CAM-C10-TPP and CAM-C14-TPP bind to the bacterial ribosome,
and their affinity depends on the length of the linker connecting the two chromophores.
New CHL analogs inhibit protein synthesis in vitro, such as CAM-C4-TPP, allowing for
the formation of multiple peptide bonds, but the mode of action of CAM-Cn-TPP in the
bacterial ribosome differs from the site-specific action of CHL, as previously observed
for CAM-C4-TPP. Moreover, we showed that CAM-C10-TPP more strongly inhibited the
growth of the Gram-positive bacteria, Staphylococcus aureus, Listeria monocytogenes, Bacillus
subtilis, and Micobacterium smegmatis, than CHL, and both CAM-C10-TPP and CAM-C14-
TPP inhibited some CHL-resistant bacterial strains. At the same time, we found that
CAM-C10-TPP and CAM-C14-TPP caused a significant decrease in the membrane potential
in Bacillus subtilis cells, and, apparently, this effect makes the main contribution to the
antibacterial action of the new compounds. Thus, we have shown that based on a ribosome
antibiotic (CHL) and a penetrating cation (TPP), it is possible to obtain antimicrobial agents
that act simultaneously on the bacterial ribosome and on the bacterial membrane. Such an
approach can be developed in the future to create new antibacterial agents by reducing
the toxicity of the compounds, for example, using other more physiologically penetrating
cations and possibly new antiproliferative agents as well.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10050489/s1: Detailed procedures of the synthesis and NMR-data; Table S1:
Occurrences of hydrogen bonds and stacking interactions of CAM-Cn-TPP, obtained by MD sim-
ulations; Table S2: Suppression of the growth of CHL-resistant E. coli strains harboring the CHL
acetyltransferase (cat) gene by CAM-C10-TPP (MIC, µM); Figure S1: Original version of Figure 2D;
Figure S2: Triphenylphosphonium derivatives of chloramphenicol amine: CAM–C10-TPP (A) and
CAM–C14–TPP (B); Figure S3: Effect of the CAM-C10-TPP derivative on the cell viability of normal
(NF) and TNBC cells.
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