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An analytical study of the generation of spectral harmonics in the modes of formation of steady-state spatiotemporal
solitons localized in all directions (“light bullets”) is carried out. A model of the medium in which the optical degree of
nonlinearity coincides with the number N ≥ 2 of generated harmonics is offered for this purpose. It is shown that, within
such a model the simultaneous generation of the harmonics and the formation of the light bullets are possible for N = 2
and N ≥ 6. At the same time, it is necessary that both the basic frequency and its harmonics belong to the spectral range
of the negative dispersion of the group velocity.

1. Introduction

Spatiotemporal solitons (“light bullets”) and the conditions
of their formation have been are extensively investigated in
the last few decades.1–21) However the processes of the
formation of light bullets under the simultaneous generation
of the highest harmonics are still insufficiently studied. Much
attention has been paid to the formation of bullets under the
generation of the second harmonics (N ¼ 2). Both theoret-
ical, and experimental works devoted to this question are
known.22–30) We also mention Ref. 31, in which the third-
harmonic generation was observed in the mode of formation
of the light bullet. It was established experimentally that the
observed light bullet changed its shape nonperiodically in the
process of evolution.31) In Ref. 32, the formation of multi-
colored “light bullets” was studied. In Ref. 33, the optical-
terahertz bullets were studied. At the same time, the
investigation of spatiotemporal solitons under the generation
of arbitrary order N (N ¼ 2; 3; 4; . . .) harmonics is of
considerable interest. This work is devoted to this study.
The direct, but not cascade, modes of the generation of
harmonics will be considered. The soliton will be understood
not in strict mathematical interpretation here. The property
of integrability of the relevant nonlinear systems of the
equations is not obligatory. Below, we will call as
spatiotemporal solitons the stable running light pulses, which
are localized in all directions.

This article is organized as follows. In Sect. 2, a physical
model is offered describing a direct (not cascade) process of
the generation of the highest harmonic with any serial
number. Here, a nonlinear system of two wave equations for
the envelopes of the main frequency and its harmonic is
derived. In Sect. 3, the one-dimensional soliton-like solutions
of this system are constructed, when the conditions of phase
and group matching are satisfied. In Sect. 4, by of an
approximate method of averaged Lagrangian, the solutions in
the form of three-dimensional spatiotemporal solitons are
obtained. The corresponding numbers of harmonics are
determined. The main conclusions of this work and further
planned investigations are given in Sect. 5.

2. Physical Model

Let the pulses propagate along the z-axis. Then, we will
write the wave equation as

@2E

@z2
� 1

c2
@2E

@t2
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c2
@2P

@t2
��?E; ð1Þ

where E and P are the electric field of the pulse and the
polarization response of the medium, respectively, c is the
speed of light in vacuum, t is time, and �? is the transversal
Laplacian.

The field E is represented as

E ¼  1ðz; t; r?Þ exp½ið!t � k1zÞ�
þ  Nðz; t; r?Þ exp½iðN!t � kNzÞ� þ c:c:; ð2Þ

where  1ðz; t; r?Þ and  Nðz; t; r?Þ are the envelopes of the
basic and highest harmonics, r? is the cross radius vector,
and k1 and kN are the wave numbers of the basic and Nth
harmonics, respectively.

Let us write the polarization response of the medium as

P ¼ Plin
1 þ Plin

N þ Pnon; ð3Þ
where Plin

1 and Plin
N are the linear polarization responses of a

basic component and of the Nth harmonics, respectively, and
Pnon is the nonlinear part of the polarization response.

Let us assume that the density of medium is low, i.e., the
corresponding refractive index is near the unit in the spectral
range, which covers the frequencies ω and N!. In this case,
we can apply to Eq. (1) an approach of the unidirectional
propagation along the z-axis.34) Then, we obtain approx-
imately
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Note that this approach is well satisfies to the paraxial
approximation [see last term on the right-hand side of
Eq. (4)].

We will present the linear parts of polarizing responses in
the form of the well-known expansion:35)
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eiðN!t�kNzÞ þ c:c: ð5bÞ
Here, �! and �N! are the linear susceptibilities on the
frequencies ω and N!, respectively.

In turn, neglecting the dependence of the nonlinear
susceptibility � ðNÞ on the frequency, we will present a
nonlinear part of the polarization response in the following
simple form:

Journal of the Physical Society of Japan 85, 124404 (2016)

http://doi.org/10.7566/JPSJ.85.124404

124404-1 ©2016 The Physical Society of Japan

http://doi.org/10.7566/JPSJ.85.124404


Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

Pnon ¼ � ðNÞEN: ð6Þ
The physical mechanisms resulting in quadratic and cubic

nonlinearities can have various origins.2) As for nonlinearities
of higher orders (N � 4), the major role in their emergence is
played by the electron-optical intra-atomic mechanism. In
anisotropic media, this mechanism can lead to the generation

of both even and odd harmonics.
Substituting Eq. (2) into Eq. (6) and selecting only terms

that are oscillating on the frequencies ω and N!, we will
have

Pnon ¼ Pnon
1 þ Pnon

N ; ð7Þ
where

Pnon
1 ¼ � ðNÞ N �N�1

1  Ne
iðNk1�kNÞz þ "

XðN�1Þ=2
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" #
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1 e
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" #
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" ¼ 0, if N is even, and " ¼ 1, if N is odd.
We will assume further that the conditions of the matching of the phase and group velocities are satisfied, i.e.,

kN ¼ Nk1; ð10Þ
vg1 ¼ vgN; ð11Þ

where the group velocity vg1 is defined by the expression

1
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¼ @k1
@!

¼ 1

c
1 þ 2� �! þ !

@�!
@!

� �� �
;

the expression for the wave number k1 is k1 ¼ ð!=cÞð1 þ 2��!Þ. The formulae for vgN and kN are derived from these
expressions for vg1 and k1 by the replacement ! ! N!.

In the substitution of Eqs. (8) and (9) into Eq. (4), we assume that @Pnon
1 =@t � i!Pnon

1 and @Pnon
N =@t � iN!Pnon

N . In linear
terms, we will neglect the temporary derivatives more than the second order [see Eqs. (5a) and (5b)]. Then, we obtain the set of
two wave equations:
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where b ¼ ð2�!=cÞ�N and � ¼ t � z=vg1. The coefficients of dispersion of the group velocity (DGV), kð1Þ2 and kðNÞ2 , are defined as

kð1Þ2 ¼ @

@!

1

vg1

� �
and kðNÞ2 ¼ @

@N!

1

vgN

� �
:

According to the first terms in the square brackets of equations (12) and (13), a condition of phase matching (10) can be
valid only for one degree N. Therefore, other degrees of nonlinearity are absent in (12) and (13).

It is very difficult to meet the conditions (10) and (11). For this purpose, the technique of tilted wave fronts can be used, for
example.2)

The further analysis is based on the investigations of soliton-like solutions of Eqs. (12) and (13).

3. Temporal Steady-State Soliton-Like Solutions

Assuming in (12) and (13) �? 1 ¼ �? N ¼ 0, we will find the one-dimensional soliton-like solutions in the following
forms:

 1ðz; �Þ ¼ F1ð�Þeiq1z;  Nðz; �Þ ¼ FNð�ÞeiqNz; ð14Þ
where q1 and qN are some constants and F1ð�Þ and FNð�Þ are the unknown real functions.

Substituting Eq. (14) into Eqs. (12) and (13), we obtain
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2
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" #

; ð15Þ

�qNFN ¼ � kðNÞ2

2
€FN þ Nb FN1 e

�iðqN�Nq1Þz þ "
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l¼0

N!FN�1�2l1 F2lþ1
N
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" #
: ð16Þ

By assuming in Eqs. (15) and (16)

qN ¼ Nq1; ð17Þ
we have e�iðqN�Nq1Þz ¼ 1.
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We will consider further that the functions F1ð�Þ and FNð�Þ
are proportional to each other, i.e.,

FN ¼ ANF1; ðN ¼ 1; 2; 3; . . .Þ; ð18Þ
where AN is the constant, defined below.

Then, the self-consistence of Eqs. (15) and (16) requires
the performance of the equalities

kðNÞ2 ¼ Nkð1Þ2 ; ð19Þ

NAN � 1

AN
¼ "ð�N � �1Þ; ð20Þ

where

�1 ¼
XðN�1Þ=2
l¼0

N!A2l
N

ððN � 1Þ=2 � lÞ!ððN þ 1Þ=2 � lÞ!l!2 ;

�N ¼
XðN�1Þ=2
l¼0

N!A2l
N

ððN � 1Þ=2 � lÞ!l!ðl þ 1Þ! : ð21Þ

As a result, for F1ð�Þ, we come to the equation

€F1 ¼ 1

�2p
F1 � �FN1 ; ð22Þ

where

� ¼ � 2b

kð1Þ2

ðNAN þ "�1Þ; ð23Þ

and the temporary duration �P of a soliton is determined
as

1

�2p
¼ 2q1

kð1Þ2

¼ 2qN

kðNÞ2

: ð24Þ

The soliton-like solution of Eq. (22) is

F1 ¼ N þ 1

2��2p

 ! 1
N�1

sech
N � 1

2

�

�p

� �� � 2
N�1
: ð25Þ

From here, and also from Eqs. (14), (17), and (18), we find

 1 ¼ N þ 1

2��2p

 ! 1
N�1

exp i
kð1Þ2

2
z

 !
sech

N � 1

2�p
�

� �� � 2
N�1
; ð26Þ

 N ¼ AN
N þ 1

2��2p

 ! 1
N�1

exp i
Nkð1Þ2

2
z

 !
sech

N � 1

2�p
�

� �� � 2
N�1
:

ð27Þ
We will analyze separately the cases of the generation of

even and odd harmonics.

3.1 Even harmonics (N ¼ 2; 4; 6; . . .)
In this case, " ¼ 0. Then, from Eqs. (20) and (23), it

follows that

AN ¼ � 1ffiffiffiffi
N

p ; � ¼ � 2bffiffiffiffi
N

p
kð1Þ2

: ð28Þ

Thus, the efficiency of the generation of the harmonics
decreases with the increase in their serial number N. In turn,
from Eqs. (26) and (27), it is visible that parameter α can be
both positive and negative.

3.2 Odd harmonics (N ¼ 3; 5; 7; . . .)
In this case, " ¼ 1. Then, the condition (20) represents the

algebraic equation of the degree N, from which the coefficient

AN is defined. We will postpone the study of the roots of
Eq. (20) until the following section. Here, we will only notice
that these roots exist for any positive odd values of N.

The expression in brackets of the right-hand side of
Eq. (23) for all values of AN is positive. From Eqs. (25) and
(26), it follows that � > 0. Therefore, solutions (26) and (27)
exist if b=kð1Þ2 	 �ðNÞ=kð1Þ2 < 0. This condition is well known
from the theory of optical solitons: if the nonlinearity is
focusing ( � ðNÞ > 0), then solitons are formed in the spectral
area of negative DGV (kð1Þ2 < 0) and vice versa. It is seen that
this property is fair also for the pulse mode of the generation
of odd harmonics.

Let us analyze a possibility of the fulfillment of the
conditions (10), (11), and (19). Let the dispersion of the
medium be determined by one spectral line of resonant
absorption on the characteristic frequency !0. Then,
Sellmeier’s formula becomes

�! ¼ !2
0 �0

!2
0 � !2

;

where �0 is the linear susceptibility of the medium at ! ¼ 0.
Let the basic frequency and the frequency of the harmonics

satisfy the condition ! 
 !0. Then we have �! �
�0ð1 þ !2=!2

0Þ. If the medium is microdispersive (granu-
lated), then a spatial dispersion is essential. Then, the last
formula can be modified as36)

�! � �0 1 þ �
!2

!2
0

� �
; ð29Þ

where η is the dimensionless constant, the absolute value of
which is a unit order; in the presence of spatial dispersion, the
parameter η can be both positive and negative.36)

In this case, we have

k1 ¼ !

c
1 þ 2��0 1 þ �

!2

!2
0
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;

1

vg1
¼ 1

c
1 þ 2��0 1 þ 3�

!2

!2
0
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;

kð1Þ2 ¼ 12��0�

c!2
0

!: ð30Þ

Because kð1Þ2 is proportional to the carrier frequency ω,
condition (19) is satisfied automatically. Note that the
parameters kð1Þ2 and kðNÞ2 can be both positive and negative.
At the same time, it is not possible to meet precisely
conditions (10) and (11). However, taking into account that
2��0 
 1 and !2=!2

0 
 1, it is possible to consider that
conditions (10) and (11) are satisfied approximately. We have
then k1 � n!=c, kN � Nk1, and vg1 � vgN � c=n, where
n ¼ 1 þ 2��0 is the inertia-less part of the refractive index.
Let us reveal the conditions under which the small detuning
of phase and group velocities can be neglected. Let ls be the
medium sample scale length in the direction of pulse
propagation. Then, t1 ¼ ls=vg1 and tN ¼ ls=vgN are the
propagation times through the medium of the basic pulse
and pulse of harmonics, respectively. The detuning of
velocities is not significant if jt1 � tNj 
 �p. From here and
from (30), we find

ls 
 !0

!

� �2 c�p
6�j�j�0ðN2 � 1Þ :
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The accounting for phase detuning leads to a similar
inequality. Assuming that !0=! 	 10{102, N 	 10, �0 	
10�2, and �p 	 100 fs, we will obtain ls 
 1{10 cm.

4. Spatiotemporal Solitons

We investigate the effect of spatial perturbations on the
temporary solitons (26) and (27) now, assuming in Eqs. (12)
and (13) that �? 1;N ≠ 0. For this purpose, we use a method
of the averaged Lagrangian.37,38) Note in the beginning that
Eqs. (12) and (13) correspond to the Lagrangian density

L ¼ L1 þ LN þ Lint; ð31Þ
where

L1 ¼ i

2
 �
1

@ 1

@z
�  1

@ �
1

@z

� �

� kð1Þ2

2

@ 1

@�

				
				2 þ c

2!
jr? 1j2; ð32Þ

LN ¼ i

2N
 �
N

@ N
@z

�  N
@ �

N

@z

� �

� kðNÞ2

2N

@ N
@�

				
				2 þ c
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Lint ¼ �bð �N
1  N þ  N
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�
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� b
XðNþ1Þ=2
l¼0

N!j 1jNþ1�2lj Nj2l
ððN þ 1Þ=2 � lÞ!2l!2 : ð34Þ

We will write trial solutions, taking into account Eqs. (26)
and (27). Then

 1 ¼ N þ 1

2�

� � 1
N�1
Q

2
N�1ei’ sech

N � 1

2
Q�

� �� � 2
N�1
; ð35Þ

 N ¼ A
N þ 1

2�

� � 1
N�1
Q

2
N�1eiN’ sech

N � 1

2
Q�

� �� � 2
N�1
; ð36Þ

where Q and φ are the unknown functions of coordinates.
In a one-dimensional case (�? 1;N ¼ 0), we have Q ¼

1=�p, ’ ¼ kð1Þ2 z=ð2�2pÞ. Therefore, we will call Q and φ the
“slow” and “fast” functions of coordinates, respectively.37)

According to the method of the averaged Lagrangian, we
will substitute Eqs. (35) and (36) into Eqs. (31)–(34). After
this, we will integrate the obtained expression on τ. As a
result, we obtain

Z þ1

�1
Ld� ¼ 2

4
N�1

1 þ A2
N

N � 1

N þ 1

2�
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�
2
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�

�

�
4

N � 1

� �;

where �ð�Þ is Euler’s gamma function, and Λ is the averaged
Lagrangian, which can be written down in the form of the
sum of the refraction �R and the diffraction �D:

� ¼ �R þ �D; ð37Þ
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@’

@z
þ c

2!
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Here,

�N ¼ 1

ðN þ 3Þ 1 � N þ 2
N þ 1
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;
N þ 1
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;

4F3ð�1; �2; �3; �4; 	1; 	2; 	3;�1Þ is the generalized hypergeo-
metrical function.39)

For obtaining Eqs. (37)–(39), we used the definite
integrals given in Appendix.

Let us simplify the expression for the coefficient �N.
Let the value N be an even number. Then, assuming that
" ¼ 0 and taking into account expression (28), we will
have

�N ¼ 5 � N

N þ 3
: ð40Þ

Let N now be an odd number. It is easy to see that

�1 ¼ N þ 1

2
� � A2

N�N:

From here and from (20), we find

�1 ¼ 1

1 þ A2
N

N þ 1

2
� þ AN � NA3

N

� �
:

Then, the expression for �N coincides with the Eq. (40)
again.

Having made the replacements


 ¼ Q
5�N
N�1 ; � ¼ � c

!
’; ð41Þ

we will rewrite the averaged Lagrangian as

� ¼ 

@�
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2
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5�N þ G

ðr?
Þ2
4


; ð42Þ

where

G ¼ 2c

!

� �2
1 þ A2

N=N
2

ð1 þ A2
NÞð5 � NÞ2 ð3 � N þ BNÞ:

Using Eq. (42), we will write down the system of the
equations of Euler-Lagrange for ρ and Φ:

@

@z

@�
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@ðr?�Þ ¼ 0;
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@ðr?
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Using the equality
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p ;

we will have as a result
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@


@z
þ r?ð
r?�Þ ¼ 0; ð43Þ

@�

@z
þ ðr?�Þ2

2
þ ckð1Þ2

2!

2

N�1
5�N ¼ G

�?
ffiffiffi



pffiffiffi



p : ð44Þ

In a one-dimensional case (r? � 0) from (43), (44),
and (41), we find Q ¼ 1=�p ¼ const:, ’ ¼ kð1Þ2 Q2z=2 ¼
kð1Þ2 z=ð2�2pÞ, which coincides with the parameters of the exact
one-dimensional solutions (26) and (27). This circumstance is
an important argument in favor of the correctness of the
averaged Lagrangian method.

If G ¼ 0, the system of Eqs. (43) and (44) formally
describes a nonstationary two-dimensional current of the
ideal liquid, where the role of time is played by the z-
coordinate. The first equation is the continuity equation; the
second equation is Cauchy’s integral. If G ≠ 0, Eqs. (43) and
(44) are similar to the equations of a current of quantum
liquid with the internal interactions.40) We will notice that the
case of G ¼ 0 corresponds to the approximation of “geo-
metrical optics”.41) In turn, the right-hand side of (44)
considers the effects of solitonic diffraction.

4.1 Approximation of “geometrical optics”
In the beginning, we will find the axially symmetrical

solutions of the Eqs. (41), (43), and (44) in the approxima-
tion of nonlinear refraction, neglecting diffraction. It is clear
that only localized solutions for Q have a physical meaning.
These solutions have to possess limited energy. We will find
such solutions in Ref. 42


 ¼ 
0
R2
0

R2ðzÞ F
r

RðzÞ
� �

; � ¼ fðzÞ þ r2

2R

dR

dz
; ð45Þ

where 
0 ¼ const:, r is the radial component of the
cylindrical system of coordinates, and R, F, and f are the
still unknown functions; R has the meaning of a cross radius
(aperture) of a soliton, and R0 is the initial soliton aperture.

The solution (45) identically satisfies Eq. (43). From
Eqs. (35), (36), and the second expression (45), it is seen
that the dynamic parameter ð1=RÞðdR=dzÞ has the meaning of
the curvature of the soliton wave fronts. In turn, df=dz is a
nonlinear correction to the refractive index.

Substituting Eq. (45) into Eq. (44) and assuming that
G ¼ 0, we obtain

df

dz
þ r2

2R

d2R

dz2
þ ckð1Þ2

2!

0
R2
0

R2

� �2N�1
5�N
F2N�1

5�N ¼ 0: ð46Þ
We will choose F as

F ¼ 1 � r2

R2

� � 5�N
2ðN�1Þ

: ð47Þ
Then from Eq. (46) we obtain

df

dz
¼ � ckð1Þ2

2!
Q2

0

R0

R

� �4N�1
5�N
; ð48Þ

d2R

dz2
¼ � @UR

@R
: ð49Þ

Here, Q0 ¼ 

N�1
5�N
0 ,

UR ¼ ckð1Þ2

4!

5 � N

N � 1
Q2

0

R0

R

� �4N�1
5�N
: ð50Þ

At the same time, according to the first expression (41), we
have

Q ¼ Q0
R0

R

� �2N�1
5�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

R2

r
; r � R: ð51Þ

It is obvious that Q�1
0 is the initial temporary duration of a

soliton on the axis r ¼ 0. At the same time, the parameter
Q

2
N�1
0 is proportional to the initial amplitudes of both soliton

components at r ¼ 0. In turn, the dynamic parameters Q�1

and Q
2

N�1 are the local duration and amplitude, respectively
[see Eqs. (35) and (36)].

Equation (49) is formally similar to the motion equation of
the Newtonian particle of a unit mass in the field with the
potential energy UR. Using this analogy, we will analyze on
the basis of expressions (50) and (51) the qualitative behavior
of the spatial-temporal dynamics of the soliton (35) and (36)
under various degrees of the nonlinearity N and under various
signs of the parameter kð1Þ2 .

1) N < 5, kð1Þ2 > 0. In this case, it follows from expression
(50) that the propagation of a soliton is accompanied by an
increase in its aperture R. This corresponds to the mode of
cross defocusing. At the same time, apparently from Eq. (51)
the parameter Q is decreasing. Thus, the temporal duration of
a soliton increases, and its amplitude decreases.

2) N < 5, kð1Þ2 < 0. Here, the propagation is observed in
the self-focusing mode. This mode is followed by the
longitudinal compression of a soliton and its peak amplifi-
cation (transversal–longitudinal collapse).

3) N > 5, kð1Þ2 > 0. Here, we have the transversal defocus-
ing, which is accompanied by the longitudinal collapse.
Apparently from Eq. (51), this process is followed by an
increase in the parameter Q. It corresponds to the longitudinal
compression and the peak amplification of the soliton. Thus,
the soliton is focused not in a point, and is going to the line,
which is perpendicular to the direction of propagation.

4) N > 5, kð1Þ2 < 0. In this case, we have the self-focusing
mode with respect to transversal directions, which is followed
by the longitudinal broadening of a soliton (transversal
collapse). Here, the soliton is going to the line parallel to the
direction of propagation.

4.2 Diffraction effect
Diffraction can counteract the process of self-focusing

(collapse). We investigate this question in detail. Let the
right-hand side of Eq. (44) be not equal to zero, i.e., G ≠ 0.
Following the logic of previous works41–43) and starting from
expression (47), we will consider that

F ¼ exp � 5 � N

2ðN � 1Þ
r2

R2

� �
: ð52Þ

Then,

Q ¼ Q0

R0

R

� �2N�1
5�N

exp � r2

2R2

� �
: ð53Þ

We will particularly note that the expressions (45) and (52)
satisfy in accuracy Eq. (43). Moreover, it is seen that the
expressions (47) and (52) become similar to each other under
the near-axis condition:42)

ðr=RÞ2 
 1: ð54Þ
This remark also concerns the expressions (51) and (53).
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We will substitute Eqs. (45) and (52) into Eq. (44). Then,
we will expand F into a series with respect to ðr=RÞ2, being
limited to the first degree of this parameter [see (54)].
Equating the coefficients at r0 and r2 in the left- and right-
hand sides, we will obtain

df

dz
¼ � ckð1Þ2

2!
Q2

0

R0

R

� �4N�1
5�N

� c

!

� �2hN
R2

; ð55Þ
where

hN ¼ 4
1 þ A2

N=N
2

1 þ A2
N

3 � N þ BN
ð5 � NÞðN � 1Þ :

For the aperture, we obtain equation (49), taking into account
the replacement UR ! U, where

U ¼ UR þ UD; ð56Þ

UD ¼ c

!

� �2gN
R2

; ð57Þ

gN ¼ ð1 þ A2
N=N

2Þð3 � N þ BNÞ
ð1 þ A2

NÞðN � 1Þ2 ;

and UR is determined by the Eq. (50).
The part UD of potential energy U is accounted for the

effect of diffraction.
The first integral of equation (49) with replacing UR ! U

has the appearance

1

2

dR

dz

� �2

þ UðRÞ ¼ 1

2

dR

dz

� �
z¼0

þUðR0Þ: ð58Þ

The simple analysis shows that the coefficient gN is
positive for all values of N. It concerns both even and
odd harmonics. The values of the coefficients gN and AN
are given in Tables I and II for even and odd values of
N, respectively. The coefficient AN in the case of even values
of N is determined using Eq. (28). In case of odd values
of N, this coefficient is a root of equation (20), where
" ¼ 1.

In the case of even harmonics, the diffraction coefficient gN
has the maximum value gN ¼ 1:00 at N ¼ 2. Upon reaching
the minimum at N ¼ 6, this coefficient then monotonically
increases, aspiring in a limit N ! 1 to the value of 0.25. In
turn, the coefficient AN monotonically decreases with the
growth of the number of a harmonic according to Eq. (28).
The sign “�” on the right-hand side of Eq. (28) reflects the
fact that under condition (17), the set of Eqs. (15) and (16) is
invariant with respect to the transformations F1 ! �F1 and
FN ! FN at the even values of N. The efficiency of the
generation of the harmonics is defined by the ratio of the
intensities 	ðFN=F1Þ2. Therefore, the choice of a sign in (28)
is not important.

In the case of odd harmonics to each value of N, there
correspond three values of the coefficient AN: A

ð1Þ
N , Að2Þ

N , and
Að3Þ
N . It is also seen that Að1Þ

N ! �1, Að2Þ
N ! 0, and Að3Þ

N
! 1

with the increase in the value of N. To understand what value
of AN should be chosen under each fixed value of N, we
will address formulae (20) and (21). In Figs. 1–5, the
dependences of the potential energy UðRÞ corresponding to
these formulae are represented. Under the condition kð1Þ2 > 0,
the function UðRÞ monotonically decreases with the increase
in the aperture R for all values of N (Figs. 1 and 2). It
corresponds to the unlimited broadening of the pulse.

Thus, under the condition kð1Þ2 > 0, the formation of stable
spatiotemporal solitons is impossible. On the other hand, the
function UðRÞ under the condition kð1Þ2 < 0 possesses a local
minimum for all even and odd values of N, except N ¼ 3 and
N ¼ 4 (see Figs. 3–5).

The case of N ¼ 5 in our approach is special. Here,
additional investigation by more exact methods is required.

The existence of a local minimum in the function UðRÞ
corresponds to a possibility of the formation of a stable
spatiotemporal soliton or a light bullet (Figs. 3 and 5). The
existence of a local maximum in the function UðRÞ attests to
the instability of the pulse mode of the generation of the
harmonics for N ¼ 3 and N ¼ 4 (Fig. 4). As noted in
Introduction, under the generation of third harmonics, the
observed light bullet changed its shape nonperiodically.31)

This observation coincides with the result obtained here: in
the course of the generation of the third harmonics, the
steady-state spatiotemporal solitons cannot be formed.

In the case of odd values of N, the stable pulse mode is
possible under the condition N � 7. From Table I, it is seen
that, in view of the approximate character of the approaches
used here, it is possible with good accuracy for the odd
values of N to assume that AN ¼ �1. Here, we have also
considered the remark on the insignificance of a sign of the
coefficient AN made above. At the same time, the values of
the coefficient gN for various numbers N of odd harmonics lie
in an interval between 0.08 and 0.125 (see Table II). The case
AN ¼ 0 corresponds to the lack of the generation of the
harmonics. Therefore, this case is out of consideration. The
pulse mode of generation for N ¼ 3 is unstable.

We will find the value RðNÞ
m corresponding to the extremum

of UðRÞ from the condition @U=@R ¼ 0. By assuming also
that R0 ¼ RðNÞ

m , we will have

Table II. Dependences of the coefficients AN and gN on odd numbers of
the generated harmonics.

N AN gN

3
−1.52 0.16
−0.28 0.28
0.79 0.20

5
−1.05 0.08
−0.05 0.15
0.95 0.08

7
−1.01 0.08
−0.01 0.16
0.99 0.08

9
±1 0.09
0 0.17

∞ ±1 0.125
0 0.25

Table I. Dependences of the coefficients AN and gN on even numbers of
the generated harmonics.

N AN gN
2 ±0.71 1.00
4 ±0.50 0.14
6 ±0.41 0.13
8 ±0.35 0.15
10 ±0.32 0.16
12 ±0.29 0.17
∞ 0 0.25
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RðNÞ
m ¼ �p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cgN

!jkð1Þ2 j

s
; ð59Þ

where �p ¼ 1=Q0 is the initial temporal duration of a soliton
on the central axis (at r ¼ 0).

Note that for N ¼ 2; 6; 7; 8; . . . this value of RðNÞ
m

corresponds to the minimum of the potential energy UðRÞ,
and for N ¼ 3 and N ¼ 4, to the maximum.

In these cases (N ¼ 3; 4), under the conditions R0 < Rð3;4Þ
m

[ð@U=@RÞR¼R0
< 0] and kð1Þ2 < 0, both pulse components

experience irreversible spatiotemporal broadening. Other-
wise, i.e., if R0 > Rð3;4Þ

m ð@U=@RÞR¼R0
> 0, we have a collapse

of the laser pulse. Using (23), (26), (27), and the expression
for b [see below equation (13)], and taking into account (59),
we will rewrite the conditions of the appearance of a collapse
as

�j 1j2Rð3Þ2
m 	 c2g3

!2�3
; �j 1j3Rð4Þ2

m 	 c2g4
!2�4

:

Introducing the intensity I1 ¼ ðc=4�Þj 1j2, in the case of
cubic nonlinearity, we will have from here the known
condition on power2) P1 	 �I1R

2
0 > �I1R

ð3Þ2
m 	 Pc ¼ c�2=

ð48�3�3Þ, where � ¼ 2�c=! is the wavelength of the basic
pulse component. This coincidence serves as an argument in
favor of the results obtained here.

Using the last Eq. (30) here, we will rewrite Eq. (59) as

RðNÞ
m ¼ c�p

!0

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gN

6��0j�j
r

: ð59aÞ

Within our physical model, !0=! 
 1 and gN=
ð6��0j�jÞ 	 1 (see Sect. 3). Because the longitudinal scale
length of a soliton lk 	 c�p, from Eq. (59a), it follows that
RðNÞ
m 
 lk. By assuming also that �p 	 100 fs and !0=! 	

10{102, we will have RðNÞ
m 	 0:1{1mm.

The case of N ¼ 2 under the condition kð1Þ2 < 0 has one
important difference from the cases when N ¼ 6; 7; 8; . . . .

Actually, in the case of N ¼ 2, the potential energy
UðRÞ ! 0, if R ! 1. For N ¼ 6; 7; 8; . . . in a limit R ! 1,
we have UðRÞ ! 1. Therefore, in the case of N ¼ 6; 7; 8; . . .
under the condition kð1Þ2 < 0, the light bullet can be created
at any input values of R0 and ðdR=dzÞz¼0. This statement
is incorrect for the case of N ¼ 2. Let, for example, the
wave fronts of the input pulse be flat. This means that
ðdR=dzÞz¼0 ¼ 0 [see the second expression (45)]. Then, the
stable bullet can be created when performing the condition
R0 > Rth ¼

ffiffiffiffiffiffiffiffi
2=3

p
Rð2Þ
m � 0:82Rð2Þ

m . Here, the value of Rth is
determined from the condition UðRthÞ ¼ 0 at R ¼ R0.
Otherwise, the pulse broadens in all directions.

If R0 ≠ RðNÞ
m and N ≠ 3; 4; 5, then the aperture of the “light

bullet” under propagation in the medium oscillates around
the value of RðNÞ

m . The oscillations of aperture will be
accompanied by the oscillations of the duration 1=Q of a
soliton, its amplitude Q

2
N�1 , and also periodic changes in its

phase velocity and the curvatures of wave fronts [see
Eqs. (53), (35), (36), (45), and (55)].

In the case of N ¼ 2, the transversal compression of a light
bullet is accompanied by the longitudinal compression and
by the peak amplification of both soliton components, and
vice versa. If N ¼ 6; 7; 8; . . . , the transversal compression is
accompanied by the longitudinal broadening and by the peak

Fig. 3. Dependence of the potential energy U on the pulse aperture R for
N ¼ 2 in the case of kð1Þ2 < 0.

Fig. 4. Schematic dependence of the potential energy U on the pulse
aperture R for N ¼ 3 and N ¼ 4 in the case of kð1Þ2 < 0.

Fig. 5. Schematic dependence of the potential energy U on the pulse
aperture R for N � 6 in the case of kð1Þ2 < 0.

Fig. 1. Schematic dependence of the potential energy U on the pulse
aperture R for 2 � N � 4 in the case of kð1Þ2 > 0.

Fig. 2. Schematic dependence of the potential energy U on the pulse
aperture R for N � 6 in the case of kð1Þ2 > 0.
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decrease of both bullet components. In turn, the transversal
broadening is accompanied by the longitudinal compression
and by peak amplification [see Eqs. (53), (35), and (36)].
These phenomena occur in the periodic regimes of pulsations
of the light bullets.

5. Conclusions

In this work, the soliton-like modes of the generation of the
highest harmonics are investigated. Within the offered model,
there is only one degree of nonlinearity. The value of this
degree coincides with the value of the number of generated
harmonic. Such a model is the most physically correct for
cases when N ¼ 2 and N ¼ 3. In the case of the direct (not
of cascade) generation of harmonics of higher orders (N ¼
4; 5; 6, etc.) besides the nonlinearity of the degree N, it is
necessary to consider also the degrees of lower orders. For
example, in the investigation of the generation of the fourth
harmonic, the nonlinearities of the second, third, and fourth
orders should be considered. In our model, no such account is
carried out. However, the conducted investigations show that
in the case of harmonics with the values of N � 6, there is a
clear tendency to form light bullets under the condition
kð1Þ2 < 0. For N ¼ 3 within our model, the bullets cannot be
formed. At the same time, it is known that light bullets are
formed, for example, in the presence of the saturating
nonlinearity,2) but without the generation of the third
harmonic. There is hope that in the pulse mode of the
generation of the third harmonic, the saturating nonlinearity
can also promote the formation of stable spatiotemporal
solitons. The solution of this task is of additional interest.

The applicability of this model may be difficult for large
values of N. In this case, the basic frequency and its
harmonics may belong to the spectral ranges where the linear
and nonlinear properties of the medium change radically. It
is therefore important to seek ways to study where the
conditions (10), (11), and (19) cannot be satisfied simulta-
neously.

Within the proposed model, it is possible to account for the
dispersion of nonlinear susceptibilities. It is easy to see that in
the cases of the even values of N, it is necessary to correct
Eq. (28):

AN ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðNÞð!Þ

N�ðNÞðN!Þ

s
:

Here, �ðNÞð!Þ and � ðNÞðN!Þ are the nonlinear susceptibilities
for the basic frequency ω and for the harmonic N!,

respectively. For the even values of N the coefficients in
Eq. (19) will depend on the frequency. Then, the values of
AN will also depend on frequency. It will strongly complicate
the investigation and it cannot be carried out in a general
manner.

Equation (56) corresponds to the aberrationless approx-
imation.1,42) It is also of interest to obtain and analyze the
solutions of Eqs. (12) and (13), similarly to localized optical
vortices.2,44,45)

Ansatz (18) is limiting the number of possible solutions of
Eqs. (15) and (16). Other solutions of this set, which are
beyond ansatz (18), are possible. In the choice of ansatz, we
made a start from the solutions, which were obtained in
Ref. 46 for the generation of the second harmonic in the case
of light beams.

On the other hand, the investigation conducted here within
the proposed model allows us to use the general approach for
studying the soliton-like mode of the generation of the
highest harmonics.

The main result of the present work is that, within the
proposed model, the pulse process of the generation of the
highest harmonics can develop in the formation mode of light
bullets. First, for this purpose, the dispersion of group
velocity both for the main frequency and for the frequency of
harmonic has to be negative. Secondly, the formation of
stable bullets is possible under the generation of the second
harmonics (N ¼ 2), and harmonics with values of N
satisfying the condition N � 6. In the cases of N ¼ 3 and
N ¼ 4, the generation is accompanied by the self-focusing or
defocusing of the pulses.

The case of N ¼ 5 requires a separate investigation. The
method of an averaged Lagrangian used here is unsuitable for
N ¼ 5.

Further study of the formation of the light bullets in the
course of the generation of the harmonics, when, on input
into a medium, the pulse of the harmonics is absent, is of
interest. Most likely, it is possible to conduct such study only
by numerical simulations.
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Appendix

The values of definite integrals at � > 039) are

Z þ1

�1
sech� 	d	 ¼ 2��1

�2ð�=2Þ
�ð�Þ ;

Z þ1

�1
	 tanh 	 sech� 	 d	 ¼ 2��1

�

�2ð�=2Þ
�ð�Þ ;

Z þ1

�1
	2 tanh2 	 sech� 	 d	 ¼ 2��1

�
2

�

� �3

4F3ð�=2; �=2; �=2; �; � þ 1; � þ 1; � þ 1;�1Þ

� 1

2

2

� þ 1

� �3

4F3ð� þ 1; � þ 1; � þ 1; 2ð� þ 1Þ;� þ 2; � þ 2; � þ 2;�1Þ
�
:
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