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[1] The relation between heat flow through snow and
microstructure is crucial for the comprehension and
modeling of thermophysical, chemical, and mechanical
properties of snow. This relationship was investigated using
heat flux measurements combined with a microstructural
numerical approach. A snow sample was subjected to a
temperature gradient and the passing heat flux was
measured. Simultaneously, the snow microstructure was
imaged by X-ray micro-tomography. The heat flow through
the observed ice matrix and its heat conductivity was
computed by a finite element method. Comparison of
measured and simulated heat conductivities suggests that
heat conduction through the ice matrix is predominant. The
representative elementary volume with respect to density
and heat conductivity as well as the tortuosity factor of the
ice matrix was determined. In contrast to the density, the
tortuosity factor takes into account the relevant geometry of
the ice matrix and has many advantages in heat transfer
models. Citation: Kaempfer, T. U., M. Schneebeli, and S. A.

Sokratov (2005), A microstructural approach to model heat

transfer in snow, Geophys. Res. Lett., 32, L21503, doi:10.1029/

2005GL023873.

1. Introduction

[2] Heat flow through snow induces metamorphism and
thus modifies the snow microstructure, which in turn
influences the properties of snow [Arons and Colbeck,
1995]. These include thermophysical properties, important
for modeling the energy balance of snow-covered land-
scapes [Sokratov and Barry, 2002]; chemical properties
used for the interpretation of ice cores [Legrand and
Mayewski, 1997]; and mechanical properties necessary for
avalanche forecasting [Schweizer et al., 2003]. An under-
standing of the relationship between heat flow and snow
microstructure is thus crucial for improving models in
climatology, interpretations of geochemical and isotopic
signals, and avalanche research.
[3] Current heat transport models [Sturm et al., 1997]

relate the effective heat conductivity of snow, ks, empiri-
cally to the snow density. However, measured ks differ up to
five times between measurements made in snow that is
similar both in density and in crystal type [Sturm et al.,
1997]. It is thus necessary to find more relevant parameters
related to the snow microstructure that govern ks. So far, the
microstructural complexity always required simplifications,
as for example in the model of Adams and Sato [1993],
which uses uniformly packed ice spheres. Only recently did
tomographic reconstructions [Schneebeli, 2000; Brzoska et
al., 1999] lead to 3D representations of the real snow

structure at the micro-scale. Schneebeli [2004] uses such
reconstructions to compute elastic stress in the ice matrix of
snow, but no relation to heat transport has been established
so far.
[4] We used the snowmicrostructure imaged by computed

X-ray micro-tomography (m-CT) to study heat transport
through snow. We subjected a snow sample to a constant
temperature gradient, jrTgj, measured the passing heat
flux, and determined the effective heat conductivity of the
snow. Simultaneously, we imaged the snow microstructure
by m-CT, as described by Schneebeli and Sokratov [2004],
discretized the ice matrix by finite elements, and solved the
stationary heat transport equation corresponding to the
experimental setup. We deduced the representative elemen-
tary volume (REV) of the snow with respect to density and
heat flux in the ice matrix and related it to microstructural
parameters obtained by image analysis. Moreover, we deter-
mined the tortuosity factor of the ice matrix, which takes into
account the heat transport in the ice matrix.

2. Experimental Setup

[5] We sieved snow into a cylindrical sample holder
developed for temperature gradient metamorphism experi-
ments inside the micro-tomograph [Schneebeli and
Sokratov, 2004], resulting in a snow sample of 2 cm height
and 4.8 cm in diameter. The final density, determined by
weighting the sample, was rs = 268 kg m�3, and the snow
type was small, rounded grains (class 3a in the international
classification). We kept the temperature inside the m-CT
measurement chamber constant at Tenv = 265.6 ± 0.5 K and
applied a temperature gradient of jrTgj = 40 ± 5 K m�1 to
the snow. We installed two heat flux sensors with a
precision of ±0.1 W m�2 at the top and bottom of the
sample. Directly after imposing the temperature gradient
and as soon as the flux measurements were stabilized, we
determined the heat flux through the snow and imaged the
snow using m-CT with a spatial resolution of 25 mm. We
deduced two microstructural parameters using the distance
transform image analysis technique: the mean thickness of
the ice matrix, Tb.Th, which is determined by filling
maximal spheres into the structure and taking their average
size [Hildebrand and Rüegsegger, 1997]; and the number of
traversals of ice per unit length on a linear path through the
structure, called trabecular number and noted Tb.N, which is
given by the inverse of the mean distance between the
medial axes of the ice structure [Hildebrand et al., 1999].

3. Numerical Model

[6] We discretized the ice matrix of a sub-volume W of
the snow by transforming each ice voxel to an eight-node
brick finite element, leading to the computational domain
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Wi. Let an orthonormal coordinate system (O, ~ex, ~ey, ~ez),
denote a point in Wi by~x = (x, y, z), and suppose that~ez is
oriented along the height of Wi and thus parallel to the
applied heat flux. Denote the boundary of Wi by @Wi and set
@Wi = @Wi

t [ @Wi
b [ @Wi

a, where the superscripts t and b
stand for the top and bottom of Wi, while @Wi

a represents the
remaining boundaries (Figure 1).
[7] We solved the stationary energy conservation equa-

tion within Wi:

kir2T ~xð Þ ¼ 0; ~x 2 Wi; ð1Þ

where T(~x) is the temperature and ki = 2.29 W m�1 K�1 is
the conductivity of pure, crystalline ice, supposed to be
constant and taken as ki = ki(Tenv) in the definition given by
Fukusako and Yamada [1993]. The error on ki due to non-
constant temperatures is only ±0.2% and will be neglected.
The boundary conditions were chosen to meet the
experimental settings:

T ¼ T0; ~x on @Wb
i ; ð2Þ

T ¼ T1; ~x on @Wt
i; ð3Þ

@T

@~n
¼ 0; ~x on @Wa

i ; ð4Þ

where~n denotes the outward normal on @Wi
a, and T0 and T1

were chosen such that jrTg
cj = DT/h = m(jrTgj), with DT =

T0 � T1, h the height of Wi, and m(jrTgj) the mean value of
the experimental jrTgj. The homogeneous Neumann
boundary condition (equation 4) corresponds to insulation
at the outer walls of Wi as in the experiment and no heat
exchange between ice and air, i.e., neglecting the pore
space.

[8] The finite element code by van Rietbergen et al.
[1995] is designed to compute elastic deformations in
bones. By using the physical analogy between the Hook’s
and Fourier’s laws we adapted the code to solve
equations (1)–(4). The computation is based on a precondi-
tioned conjugate gradient method and an element-by-
element approach.

4. Results

4.1. Representative Elementary Volume and
Structural Parameters

[9] The representative elementary volume (REV) of a
material with respect to a macroscopic property is the
minimal volume at which it is reasonable to define this
property [Brown et al., 2000].
[10] We determined the REV with respect to the density

by using four cubic sub-volumes, within each of them we
increased the computational volume size in~ex,~eðyÞ,~ez from
the center on (Figure 2, left axis).
[11] To determine the REV with respect to the heat flux,

we solved numerically the equations (1)–(4) for snow
volumes with different sizes and at different positions. We
kept the size in the direction of the heat flux, the ~ez-
direction, constant equal to 195 voxels. In order to keep
the computational time reasonable, we performed the fol-
lowing simulations: For dimensions in ~ex, ~ey of 50 	 50,
124 	 124, and 200 	 200 voxels, we chose 10, 7, and
4 different regions, respectively, while we performed only
one simulation (at one position) for domain sizes of 74, 150,
174, 224, and 250 voxels in~ex,~ey. The corresponding heat
fluxes through the ice matrix are presented in Figure 2, right
axis.
[12] Concerning the structural parameters, we determined

the mean ice thickness Tb.Th = 0.1 mm and the trabecular
number Tb.N = 3.1 mm�1 for the total volume of the
observed snow.

4.2. Measured and Simulated Heat Transport

[13] The measured heat flux, ~qs, which was taken as the
mean value given by the bottom and top heat flux sensors,
was j~qsj = 7.2 ± 0.1 W m�2. With the imposed temperature

Figure 1. The computational domain Wi consisting of the
ice matrix in the snow of class 3a, with the simulated
temperature distribution. @Wi

b and @Wi
t are the bottom and

top of the domain boundary @Wi, respectively, while @Wi
a

represents the remaining boundary. The shown domain has
dimensions of 5	 5	 4.875 mm, respectively 200	 200	
195 voxels.

Figure 2. Density of the snow (left) and the computed heat
flux through the ice matrix (right) for different snow sub-
volumes and in function of the volume size.
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gradient jrTgj = 40 ± 5 K m�1 and by Fick’s law, this
corresponds to an experimental heat conductivity of ks =
0.18 ± 0.02 W m�1 K�1.
[14] Using the boundary conditions corresponding to the

experiment with the mean temperature gradient jrTg
cj =

40 K m�1, we computed the temperature distribution within
the ice matrix, neglecting the pore space and any phase
changes (Figure 1). The temperature and temperature gra-
dient fields within a 2.25 	 0.3 	 2.7 mm sub-domain are
shown enlarged in Figure 3.
[15] For each voxel, respectively finite element, the

temperature gradient rTc was determined from the com-
puted temperature values at its nodes by linear approxima-
tion and an apparent heat flux along ~ez through the snow,
denoted ~qi

s 
 ~ez, considering only conduction in the ice
matrix, was computed by

~q s
i 
~ez ¼

Z
Si

~qi 
~ez ds

As

; ð5Þ

where~qi = �kirTc is the heat flux in the ice matrix, Si is the
ice matrix surface in any cross-section perpendicular to~ez,
and As is the total cross-section in ~ex, ~ey of the
computational domain. An apparent heat conductivity was

deduced by setting kc =
~q s
i 
~ez
rTc

g

���
���. For a computational volume

of 250 	 250 	 195 voxels, we determined kc = 0.15 ±
0.01 W m�1 K�1 for the studied snow, where the error
estimate is related to the REV and the discretization as
discussed below.

4.3. Tortuosity Factor

[16] The square of the ratio between the effective
diffusion path, Le, through a porous medium and its length
along the major diffusion axis, L, is known as the
tortuosity factor, t2 [Epstein, 1989]. If the porous medium
is modeled by a bundle of sinuous but parallel capillaries
or pores, Le is the average pore length. If there is no well
defined geometric diffusion path, one can still express the
effective conductivity of the porous medium, ke, by the
conductivity of the matrix, k, by following the argumentation

of Epstein [1989] and get ke =
�

t2
k, where � is the volumetric

density. This leads to t2 =
k�
ke
.

[17] We computed the tortuosity factor for the porous
space in cubic lattices of densely packed, identical spheres

using a computational domain of 53 lattices, where each
lattice had a spatial resolution in each direction~ex,~ey,~ez of
21 and 41 voxels. We compared the results with the values
published by Tallarek et al. [1999] in Table 1; Their values
are based on the analytical solution for the effective diffu-
sion coefficient by Venema et al. [1991]. In addition,
we determined a tortuosity factor of 2.01 for the sphere-
structure of the BCC configuration.
[18] For the ice matrix, with ke = kc = 0.15 ± 0.01 W m�1

K�1, k = ki = 2.29 W m�1 K�1, and � = rs/ri = 268/917 =
0.29, we deduced a tortuosity factor ti

2 = ki�/kc = 4.4 ± 0.3.

5. Discussion

5.1. Representative Elementary Volume

[19] The density related REV of the studied snow was
1.253 mm3 (Figure 2). Coléou et al. [2001] obtained values
of 2.53 mm3 for a crust and volumes around 1.53 mm3 for
wet grains, depth hoar, or partially faceted particles. That
our REVestimation is somewhat smaller might be explained
by the smaller grain size of our snow.
[20] A reasonable approximation of the REV with respect

to the heat flux in the ice matrix, and thus to the tortuosity
factor t2i, was 53 mm3. While the heat fluxes scattered
considerably for smaller volumes, we computed here a
mean heat flux of 5.92 W m�2 with a standard deviation
of 0.31 W m�2 and are thus within a precision of ±5%.
Considering the trabecular number of Tb.N = 3.1 mm�1, the
REV related to ti

2 corresponds thus to a volume of about
15 structural elements in each dimension. It is approximately
43 times larger than the REV with respect to density. Up to
some extent this may be explained by boundary effects as
some arms of the ice matrix end up at a side boundary and
are thus a dead-end for the heat flux; but mainly it is
explained by the high variability of rTc in the ice matrix
(Figure 3, right), which leads to a much larger averaging
volume than for the density, where the averaging field is just
binary.

5.2. Heat Transport Through the Ice Matrix

[21] The numerical model of van Rietbergen et al.
[1995] adapted to heat transport through the ice matrix
gave a heat conductivity which is expected from the direct
measurement of heat conductivity in the snow. Considering
the equivalence of the differential equations which were
solved and the detailed discussion of the model limitations
related to resolution, REV, and jagged interfaces by van
Rietbergen et al. [1995], it remained to show that the
discretization of our snow microstructure meets the criteria
already established for bone. With the determined mean ice
thickness of Tb.Th = 0.1 mm and the resolution of 25 mm,
we reach a discretization of approximately 4 voxels per ice
structure thickness. van Rietbergen et al. [1995] showed

Figure 3. Computed temperature (left) and temperature
gradient (right) in the ice matrix of a 2.25 	 0.3 	 2.7 mm
(respectively 90 	 12 	 108 voxel) slice within the
computational region.

Table 1. Tortuosity Factors of Porous Space in Cubic Lattices of

Identical Spheres at Dense Packing Computed by Our Model

Compared With the Ones Published by Tallarek et al. [1999]

Cubic Lattice 21 vox./Lattice 41 vox./Lattice Published

SC 1.45 1.41 1.38
BCC 1.55 1.52 1.47
FCC 1.71 1.65 1.62
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that, with this resolution, convergence in space was reached
for stress and strain computations within a tolerance <2%.
We confirmed this result by a numerical convergence test
with respect to the apparent heat conductivity of the ice
matrix.
[22] Analyzing the computed temperature distribution

within the ice matrix, we note that high temperature
differences of up to 20% of the overall DT occurred on
a very short distance between one ice grain and another
across a pore (Figure 3, left). This is due to the very
tortuous structure of the ice matrix and leads to high
temperature and vapor concentration gradients in the
pores, which strongly influence metamorphism. High
temperature gradients occurred also in the ice matrix
(Figure 3, right).

5.3. Heat Conductivity

[23] Heat transport through snow is governed by heat
conduction in the ice matrix and the pore space as well as
by the heat transport associated with the water vapor
diffusion. Convective effects can be neglected for the
dimension of the snow sample and temperature gradient
considered in this study, as an estimation of the Rayleigh
number leads to Ra ffi 1500 [Zhao et al., 2005]. Compar-
ison of the measured heat conductivity ks = 0.18 ±
0.02 W m�1 K�1 with the computed one kc = 0.15 ±
0.01 W m�1 K�1 suggests that conduction through the ice
matrix was predominant and in the order of 80% of the
overall heat flow. This estimate might vary for other snow
types and densities and has to be interpreted carefully, as
some errors with respect to the idealized model were
neglected. These include possible variations in the heat
conductivity of ice, imperfect boundary conditions, or
errors related to the image analysis procedures. The
completion of the numerical model by water vapor diffu-
sion will help to answer the question on the relative
importance of the heat conduction mechanisms.
[24] Note that Sturm et al. [1997] measured for snow of

the same class (3a) and with similar density to our experi-
ment values of ks between 0.15 and 0.18 W m�1 K�1, while
the empirical model gives ks = 0.10 Wm�1 K�1, with a 95%
confidence interval of approximately ±0.1 W m�1 K�1.

5.4. Tortuosity Factor

[25] By the simple solution of the heat equation on the ice
structure observed by m-CT, we deduced a microstructural
parameter of snow which is per definition directly related to
the heat flux: the tortuosity factor ti

2. By comparing
computed tortuosity factors for cubic lattices with published
values (Table 1), we conclude that for a resolution of
41 voxels per lattice, which corresponds roughly to having
4 voxels per structure-branch, we are within a precision of
±1.9–3.4%, depending on the lattice structure. The fact that
our computed values are systematically higher might be
explained by discretization artefacts which result in contacts
between spheres corresponding to disks instead of infini-
tesimal point contacts.
[26] The computed tortuosity factor of the ice-matrix

ti
2 = 4.4 ± 0.3 was much larger compared to spherical

beds in a BCC-configuration (t2 = 2.01) and to an
isotropic porous medium (2.0 [Epstein, 1989]). Classical
geometrical models for snow microstructure assume either

a BCC or FCC configuration [Adams and Sato, 1993;
Baunach et al., 2001] which cannot be justified based on
our computations.

6. Conclusion

[27] The effective heat conductivity of the ice matrix in
snow samples, even of very complex and layered texture,
can be simulated and the tortuosity factor of the ice matrix
can be deduced. The calculated tortuosity factor is very
high, even for the texturally simple snow type investigated,
compared to a material with a simple BCC-structure. Even
higher tortuosity factors must be expected for texturally
more complex snow types such as depth hoar. The high
tortuosity causes, on very short distances across the pores,
high temperature gradients and high vapor fluxes which
strongly influence the metamorphic process. In a simple
extension, using the analogy between Fourier’s law and
Darcy’s law, the air permeability of snow can be calculated.
The effective heat conductivity and the air permeability can
be determined directly, if a measured three-dimensional
snow structure is available.
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