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The J(¢) relation in SFIFS, SNINS, and SIS tunnel junctionsis studied. A method for the analytical solution of
linearized Usadel equations has been devel oped and applied to these structures. It is shown that the Josephson
current across the structure has a sum of sing and sin2¢p components. Two different physical mechanisms are
responsible for the sign of sin2¢. The first one is the depairing by current, which contributes positively to the
sin2¢ term, while the second one is the finite transparency of SF or SN interfaces, which provides the negative
contribution. In SFIFS junctions, where the first harmonic vanishes at the O-rttransition, the cal culated second
harmonic fully determines the J(¢) curve. © 2005 Pleiades Publishing, Inc.

PACS numbers; 74.50.+r, 74.80.Dm, 75.30.Et

Itiswell known that tunnel SIS Josephson junctions
have a sinusoidal current—phase relation, while, with a
decrease in the barrier transparency, deviations from
sind take place (see[1, 2] for areview). Thesign of sec-
ond harmonic is important for many applications, in
particular, in junctions with a more complex structure
such as SNINS or SFIFS, where N is a norma metd
and F isaweak metallic ferromagnet [2—4]. To analyze
this problem self-consistently, one should go beyond
the usual “rigid boundary conditions’ (RBC) approxi-
mation.

The RBC method is an effective tool used exten-
sively earlier for theoretical study of the proximity and
Josephson effects [1, 2]. This method is based on the
assumption that al nonlinear and nonequlibrium
effects in a Josephson structure are located in a “weak
link” connecting two superconducting electrodes. The
back influence of these effects on superconductivity in
the electrodes is neglected. The RBC approximation is
valid if ajunction has the constriction geometry. The
guantitative criteria for the validity of RBC for planar
SIS tunnel junctions, SS'S sandwiches, and variable
thickness bridges were studied only numerically for
some parameter ranges [2]. The main technica diffi-
culty in formulating the anaytical criteria of RBC
validity is to find the solution to equations describing
the perturbation of the superconducting statein S elec-
trodes. In this paper, we will attack this problem by
finding the solution to the linearized Usadel equations
[5]. We will also use this solution to formulate the cor-
rections to previous results obtained in the RBC
approximation.

TThis article was submitted by the authorsin English.

JUNCTION MODEL

Let usconsider astructure of the SFIFStype, where,
for ssimplicity, the parameters of the SF bilayers are
equal to each other. We assume that the S layers are
bulk and that the dirty limit conditions are fulfilled in
the S and F metals. We assume further that F metals are
weak monodomain ferromagnets with a zero electron—
phonon interaction constant and that the FS interfaces
are not magnetically active. We will restrict ourselves
to the case of parallel orientation of the exchange fields
H in the ferromagnets. The results obtained for SFIFS
junctions cross over to SNINS and SIS in the corre-
sponding limits.

Under the above assumptions, the problem is
reduced to the solution of the one-dimensional Usadel
equations [5, 6] in S and F layers and the matching of
these solutions by the appropriate boundary conditions
[7]. We choose the x axis perpendicular to the plane of
the interfaces with the origin at the central barrier | and
introduce indexes L (left), R (right), and | for descrip-
tion of the materials and interface parameters of the
SFIFS structure located on the left and right sides of the
central barrier and at this central barrier, respectively.

The Usadel functions G and F obey the normaliza-

tion condition G2 + F,F*, = 1, which allows for the

following parameterization in terms of the new func-
tion @:

Gy = i, Fy = i, (1)

&+ o 0,
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The quantity & = w + iH corresponds to the general
case when the exchange field H is present. However, in
the Slayers, H = 0, and we have smply ® = .

The Usadel equations[5] inthe S and F layers have
the form

T[T 0 0

aénGsaX[Géax%} ®g = A, @
Tl 9 0

g2t eh ax[ ig)‘(q’F}—CDF =0, 3)

where G, = ®/,/& + d,D*,, & = w+ iH in aferro-

magnet (H is the exchange field), ® = win Sand N
metals, T, and A arethe critical temperature and the pair
potential in a superconductor, w = TtT(2n + 1) are the
Matsubara frequencies, and &gr, are the coherence
lengths related to the diffusion constants Dy, as &) =

/Dsry/2TTT .. The pair potential satisfies the self-con-
sistency equations

A—-Ggdssgnw

-
-+
AInT T Z i

c

= 0. (4)

wW=—00

In the case of an SFIFStunnel junction in the quasi-
one-dimensional geometry, the boundary conditions at
the junction plane (x = 0) read

G|2:,L 0 G|2:,R 0
F‘a)—L“é;(q’F,L F—Z)—R—&CDF,Rv )
EFGFL RO Per Pe
= + e —
Y ox PrLr = *CrrQ e o U ©)

with
Yo = Rusti/peée,

where the indices L and R refer to the left- and right-
hand sides of the junction, respectively, and Ry and 4,
are the normal resistance and the area of FIF interface.

The boundary conditions at the SF interfaces (x =
Fdg ) havetheform [7]

£sGs 0 £:Gt 4 0
o xSk YT xR @
EFGFka |jDS,k CDF,ID
Vs o aXcDFk GS,k ka, ®
with yg = Redp/peér, Y = Ps&s/Prér,

where Rz and s are the resistance and the area of the
SF interfaces; pgg, is the resistivity of the S (F) layer;
k =L, R Both of these conditions ensure continuity of
the supercurrent.
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We will also suppose that, due to the low transpar-
ency of the FIF interface, the Josephson current ismuch
smaller than the depairing current of superconducting
electrodes, meaning that the suppression of supercon-
ductivity in the interior of the electrodes can be
neglected and, at X —» oo,

|¢’s k| = Ay, 9)

where A, is the magnitude of the bulk order parameter.

LIMIT OF SMALL F LAYER THICKNESS
In thislimit

. D
de < mln%F, /Q—HEE

the gradientsin (3) are small and, in the second approx-
imation of d-/, the solution of (3) has the form

(10)

2 WA
Pe . = Ak+Bkl+X_—k2 <
Y & 2 T &G i
- (12)
G2, = WR
F k™ ~2 2 :
wr+ A (w)
Integration constants A and B in (11) can be found
from boundary conditions at x = 0,

GF SFipg - GF RB _ Gg .G, rRCPR A
L= R~

12
W, R Yei Q;)R (*)LD (12)
and at X = £d,
G«

A = By, 1

k = Aok +VBGsk+ kaBM/T[T (13)
(-“)R LD Gs « de

= The , = Ve=t. (14
Aok = (Gt Dalmryy VM Yoy (1)

Expression (13) isvalidif yg < yg,. Substitution of (11)
and (13) into the boundary condition at x = +d; leadsto
2

LAy,
GS K n kas Kk
where vy = Yde/€,, and we reduce boundary problem
(2)~9) to the solution of Egs. (2), (4) in the S layers
with boundary conditions (9), (15). At H = 0 and
(Vg 0/€F) > 1, expression (15) reduces to the known
result for the SN bilayer [8].

0
Esa_xq)s.k = tYm (15)

LINEARIZED USADEL EQUATIONS

Following the RBC approximation, we will start
with the assumption that the suppression of supercon-
ductivity in the S layer is weak and that the solution of
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the Usadel equations in the superconductor has the
form

Pg(w) = Do+ Py, A =D0p+A1,  (16)
w
Ggk = G+ Gy Gy = ——,
Jo?+ A an

Gy [A5k®Py i+ Do P14
W'+ A5 2
where A = Dpexp{xi$p/2 + iUX/Eg}, ¢ is the order
parameter phase difference across the barrier, and the
coefficient U describes the linear growth of the phase

difference due to the supercurrent in the electrodes.
Correctionsto Ay and ®g  are supposed to be small:

|Ar ] < Do, | Py < Do (18)

The approximation is valid if the right-hand side of
Eqg. (15) isaso small, so that

Gk =

0 —
Esé;(q)l,k = Z(w), (19)
= (0) = *VYy FO,kAzo,k wGio,szk’
T.Go W Go
w9 (20)
Grok = X

where 9, = (Gy + Wy Yau/TtT,) and |=(w)| < A,. Fromthe
structure of the linearized Usadel equations boundary
conditions (19), it follows that there are first-order cor-
rections only to the magnitudes © and A, of functions
®; and A, , respectively, while the phases of al of
these functions coincide with those of A, . Inthis case,

~ O .¢0
¢)1,k = OeXpl:lth_;D, Al,k =
U

Alexp%ti QE (21)
O O

20

and, due to the symmetry of the structure, we have

Wr = 0O = W, Grok = Groy 9 = 9,
Aok _ o0 _ WG, (22)
A, Coexp[;tl E G, = 59"
— _ G ]
(23)

i, @ oY D-Q
+|B/MHTC+ZVBIGqusn2].

To write (23), we aso used the fact that, in the first
order with respect to |=(w)|, the magnitudes of the func-
tions @5 in (13) equal A and that G5 = G,.
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Substituting (16), (21) into (2), (3), we arrive at the
following boundary problem for @ and A;:

T
- é"—a—e+e A, 24)
2
Jo + A ox’
T ~ 1 — w6OG,
A In=+T7T — | =TT —— = 0,(25
{ Te MZ_J‘*"} w:z_w(oozwé) )

Esa O(xdp) = [Re_ (oo)cosqz) +Im= (oo)smq)} (26)

=(x) = 0. (27)
Due to the symmetry of the problem, it is enough to
solve Egs. (24)—<27) only in one of the electrodes,
namely, for x = dr. Using the equation for Ay(T),

+T[T _Zoolwl = 1T _Z_w Y

and the symmetry relation O(w) = O(—w), we can
rewrite the self-consistency equation in the form

(28)

° o omT.W 2
£E, =TTy —2 2526—26, (29)

&o(w’+Dg)" OX

AZ
3, =T ——. (30)
w>0((*) +AO)
The solution of (24), (29) is
—d
A = Z5QEXDD QQ g, FE,
Q>0

(31)

o= i S+ A el X
B T 0
oo’ + D2 -T2 &s

where the coefficients &, and g, satisfy the equation

® 2

anT
>, =T (32
u)>0( +A0) A/(JO +A0 T[chQ
0a0q _ AoP($, w) (33)

QZO(A/(A)Z"'AS—T[TCC]?}) Jo© + A2

and P(¢, w) = Re=g(w)cos($/2) + Im=g(w)sin(¢p/2).
Multiplying Eq. (33) by w?(«? + A2)=32, summing both
sides of this equation over w, and making use of (32),



338

one can transform (33) into a system of equations for
the coefficients &g, which yields

T A0Q°0g

69 = _T[T
5,(Q% +A%)°

NQ, ), (34)

where

ANQ, §) = [vMKlm)+%K2(Q)<1—cos¢)]

K (Q) = =2 [{p°+d’+p
' TTeCol 2(p*+¢?) -

(39)

K,(Q) = PGy + (HQ + pQ)yew/TT,

Q) =
Go(p*+q°)
_ H Q 0
q= ZVBMT[_-I-C%/BM.‘.[_-I-C"'qu (36)
Q?—H? Q

p= 1+—(;—T—);véM +2Go==Veu.  (37)

Here, Q = iT(2m + 1) are the Matsubara frequencies.

As aresult, the solution of boundary problem (24)—
(27) hasthe form

X—d,ﬂ

&A@ 9),(38)

T[TCAOQZqQ exp E—QQ

A, =TT Z

Q>0

5,(Q% + AY)°

x—d
MTAQ"4aA(Q, §)&Xp 30—
- _. T S
©=-m Z 2 2,2 2
ds0 22(Q7+4p) (1-7T.05G/w)

In particular, at x = dg, from (38) and (39) we have

.(39)

o(d
O(de) _ —yuZe = L5, (1- cosd), (40)
A, Yei
T Q%K (Q
S =Ty —— W@,
§50Z2(Q7 +80) (1 -TT0q Go/ w)
2
T[TCQ qQKZ(Q) (42)

g, =TI .
onzzmﬁAS)Z(l—nchéGo/w)

To calculate sums (41) and (42), one needs to know
the expression for the coefficients q,, which canin gen-
eral be obtained from numerical solution of Eqg. (32).
Since the main contribution to sums (41), (42) comes
from large Q, the asymptotic behavior of qq at large Q

can be used:
2 —G“QZ+A§ a=1 nTZIanZ+A§ (43)
Qo = O =7 — 971 o7,
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The method developed isvalid if the following con-
dition isfulfilled:

<1

YOmax 3
S’M + max 1L, In ,(44)

H*+@T)? o
Vsl 0 .

ming Yews Ya} € T)7J0
Ye < VYei-
Therefore, for the function ®g  in Eq. (14), we get
P = (8o +O(de))exp{ Fi9/2Z} , (45)
and, substituting (45) into (13), we finally obtain

200 (d0 |Coxp( £i0/2

iXE(:)GOGFOAO . ¢

A, = [AO +
(46)

Yo w9’ 2’
U= 1+ Gywygy/MT,.

F2

(47)

From the structure of coefficients Ar |, we see that the
corrections to the supercurrent across the SFIFS tunnel
junction leads not only to the reduction of the critical
current of the structure but also to changesin the J(¢)
relation.

J{() RELATION

Using the standard expression for the supercurrent
[11], boundary condition (6), and Eq. (46), we can write
down the supercurrent | across the SFIFS junction in
the form

= (Jo+Jyp)sing + Jj,8in2¢, (48)
where
mm < A 0OG
TR 2 o @
N, S0 + Colg
] 2T < NCE 000Colt
1 = eRN Z (6)2+C2A2)2|: O F1
wW=—0 0=0 (50)
~2 ~
Y W Gro | y wwCol }
+1E + L S|,
Yer 9 Yer Do F2
j. =T i AsCo
12 — ~ 2.2
eRNw: —oo(wz + CSAO) (51)

y [E GroloCo _ l(:)wuze}
Ye O VAN

Expression (49) has been obtained previously in [9—

11]. The ¢-independent correction to it, J,4, iS negative

and describesthe suppression of the sing component of

the supercurrent. The first term in Eq. (50), which is
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proportional to yy,, takes into account the suppression
of superconductivity inthe S electrodes due to the prox-
imity of the thin F layer. The last two terms, which are

proportional to y; , describe the suppression of super-
conductivity by the current across the junction. The
larger vz and y are, the weaker the superconductivity
induced into the F layer and the stronger the influence
of this effect.

The sign of the second harmonic J;, depends on the
relation between yg and y. At yg = 0, it is positive and
J($) relation (48) has a maximum at ¢ = ¢ < TV2.
Such a shift was predicted earlier near T, for SIS tunnel
junctionsand is due to the suppression of superconduc-
tivity near the barrier by a supercurrent [12]. An
increasein yg leads to additional phase shifts at both SF
interfaces and provides the mechanism for the shift of
Omax iNto the region ¢ > 102. As aresult, at sufficiently
large yg, the amplitude J;, changes its sign and ¢
shiftsto ¢ > 172. Such a competition between suppres-
sion by a supercurrent and by the proximity effect was
first analyzed in the SNSjunctions [13] at T = T.. This
fact isin full agreement with the results of humerical
calculations summarized in [2].

The physical reason for different signs of J,;, can be
easily understood if we consider the two cases sepa-
rately. Suppose first that yg is finite. In this case, the
SFIFS structure may be considered a system of three
Josephson junctions in series, as shown schematically
in Fig. 1. For rough estimates, one can assume that the
phase x of ®r  does not depend on w. Demanding the
equality of the currents across FIF and FS interfaces

and taking into account that | 0 yg < lc; O ya fory,
we will have

X = ¢/2—-|£sin2x.
ICl

Substituting this X into the expression for the supercur-
rent across the FIF interface, we get

| = IcsmBl) IClsn¢D~IC%sin¢—¥§sin2¢E.

Therefore, with increasing yg, the phase partly jumps at
the FS interfaces, leading to a continuous crossover
from the Josephson effect lumped at x = 0 to the phase
drop distributed at [X| < dg. In full agreement with the
theory of double barrier devices [2], this crossover
resultsin the appearance of a second harmonic in J{d)
with a negative sign, which provides for a maximum
Jo(0) achieved at ¢ = 17/2.

If vz = O, the structureis always lumped at x = 0 and
the main effect is the suppression of superconductivity
by a supercurrent in the vicinity of the FIF interface, as
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Tocy p(@/2—7%)
/ \

S F I F S

/2 X X ¢/2

I y_llgl sin2y,

Fig. 1. The phase distribution in a SFIFS junction.

d® .2
—E, 5o Y pr Agsin (/2 A,
/
SF [ AW FS

Ty g Ag(1—7 g sin” 0/2)sing

Fig. 2. Depairing by current near the tunnel barrier.

shown schematically in Fig. 2. The resulting contribu-
tion to the full current is

1o 0 Yaio Es %l—

It follows directly from (52) that the amplitude of the
second harmonic is positive.

The competition of the above two mechanisms of
I(¢) deformation is clearly seen from Eq. (51).

General expressions (49)—51) can be simplified in
several limiting cases.
In the symmetric SNINS tunnel junctions, H=0n

both electrodes and, in the first approximation from
(49), the earlier result from [8] is reproduced:

sn2¢D

sm¢ 0t ——gDsmcb (52)

Dy
(@ +A3)O(w)’

_2nT -
Jo = eRNZ

w20

O(w) = (1+2G0Yen/TT + (WYay/TT,)?)
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while (50) and (51) reduceto

4mT Y
Jin = —_[VMZ4+ _st Y Ze}
Yei BI

eRy,
21T Ve i
Ip = ————[——z -—z},
© eRyLYg ! Y °
where
JAWERSITVAY
24 - Z 20 02 2Fl ,
Sl +45)07(w)
- - N9?
i go(w +05)0"(w)’
5, = z GoAgBPZ e,
2 2 !
Lo (W™ + A0)O°(w)
.
7 = y
L0 + 0507 (w)

and Gy = o Jw’ + A

In th6|lmlt VH 1, H, yM’ yB, VBM —— 0, the SFI FS
structure transforms into a SIS tunnel junction. In this
case,

Co=1 AL = [Lo+0O(dr)] exp{zid/Z},

rrTCAOQZqu;in29

O(dg) = ——T[T Z
Bl Q>OZZ(Q +Ao) (1- T[chg o/w)

and, for the supercurrent | in thefirst approximation, we
have the well-known result of the Ambegakaokar—
Baratoff theory [14]:

2
2T[T A0 .
I eRN Z w2+A§sm¢.

Using (32) for J;; and Jy,, it is easy to get

— A0
Jy = —?NZZ& Jpp = eRNZ3’ (53)
£Q3
¥, = AT g

2,2 '
Yei Q>o(QZ +Ag) do
and the full current across the tunnel junctionsis

Ao

I_eRN

AR 2N
[zt h2_|_ 22} nq)+eR sin2¢.
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Thecritical current isachieved at a phase difference ¢,

and equals

Ao
eRN[Zt h2T 223}

aT—0,I(¢) smplifiesto

| [Ao T 192[11de3’2}
° eRNZ Yo HAU T

At T =T, Egs. (53) transform into the result obtained in
[12].

le=

CONCLUSIONS

In summary, we have studied the current—phase
relations J{¢) in SFIFS, SNINS, and SIS junctionsin
the regime in which the second harmonic of J{¢) isnot
small. To solve this prablem self-consistently, we have
developed an analytical method for solving the linear-
ized Usadel equations. This solution describes a weak
suppression of the superconducting state in a supercon-
ductor caused either by the proximity of normal or fer-
romagnetic material or by a current in composite SN or
SF proximity systems. The method israther general and
can be applied to a wide spectrum of proximity prob-
lems.

We have demonstrated that the full current across
structure (48) consists of the sum of the sing and sin2¢
components and have calculated the amplitudes (J, +
J;)) and J,, of these components. In SIS and SNINS
structures, the corrections J;; and J;, to the previously
calculated critical current J, are small. The J(¢) curve
is slightly deformed so that the maximum value of the
supercurrent is achieved at the phase difference ¢,
which can be smaller or larger than 172 for a positive or
negative sign of J,,, respectively. In SFIFS junctions,
Jo = 0 at the point of the transition from the O to the 1t
state. Thismeansthat, in this case, the cal cul ated values
J;, and J;, determine the J(¢) curve. Since the ampli-
tudes J,;; and J;, may have comparable magnitude, the
J(¢) measured experimentally can be essentially differ-
ent from sing. The validity of the approach developed
is determined by inequalities (44) and yz < Yg,. These
conditions also determine the validity of rigid boundary
conditions in the models [2] describing the properties
of SFIFS, SNINS, and SIS tunnel junctions.
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