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• Ethanol treatment of electrospun PLA
mats led to their shrinkage and fibers
crimping without an increase of crystal-
linity

• Both free-ends and fixed-ends ethanol-
treated PLA mats had a higher elonga-
tion at break than the non-treated ones

• Stretching of PLAmats in ethanol caused
their high alignment while stretching in
air led to fibers necking and poor align-
ment

• Ethanol-stretched PLA mats caused
contact guidance of HaCaT human
keratinocytes
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In the present work, we analyzed the changes in structure and mechanical properties of electrospun PLA mats
induced by ethanol treatment. The amorphous PLAmats gained elasticitywhen immersed into ethanol (the elon-
gation at break increased from ɛ~50% in air to ɛ~280% in ethanol) and partly retained it after drying (ɛ~110%). At
the nanoscale, the ethanol treatment caused crimping of the fibers without crystallinity increase. Stretching of
the electrospun mats in ethanol caused high alignment of the fibers (geometrical orientation factor f = 0.92)
without the need for a special collector electrode such as a pair of blades, which yielded mats with geometrical
orientation factor f = 0.71. The aligned mats prepared by stretching in ethanol caused contact guidance of
HaCaT human keratinocytes and did not taint viability and proliferation rate of cells in comparison with the
non-aligned ones. Our research demonstrates the tuning of electrospunmats properties by post-treatment with-
out any modification of the chemical structure.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Electrospinning is a method to fabricate nano-and micro-fibrous
materials which can be used for cell culturing [1,2], tissue engineering
scaffolds [3,4], gases and liquid filters [5,6], sorbents [7,8] and other ap-
plications [9,10]. The properties of electrospun mats can be tuned by
various post-processingmethods – heating, radiation or chemical treat-
ment [11–13]. Among the diversity of post-processing methods, the
simple ethanol treatment is of great interest. It can be used not only as
a disinfection method for electrospun mats but also to modify the mat
properties, including morphology, crystallinity, mechanical and biolog-
ical properties.

Only a few papers describe structural changes in electrospun mats
which occur upon their post-treatment with ethanol [14–18]. They
focus on electrospun biodegradable polyesters – poly (lactic acid)
(PLA) and its copolymers. Ethanol acts as a plasticizer for the on
electrospun PLA mats and can modify fiber shape and size, physical
properties and biocompatibility of mats. Firstly, the immersion of
electrospun PLA mats into ethanol led to their shrinkage accompanied
by fibers crimping [14,15]. Similar crimping was observed when the
electrospun mats were heated [19,20]. The electrospun poly(L-lactide-
co-ε-caprolactone) (PLCL) fibers became crimped when the operating
temperature during incubation of electrospun mats in phosphate buff-
ered saline (PBS) was higher than the polymer glass-transition temper-
ature [16]. The fiber crimping was retained after the temperature
decreased. Secondly, ethanol can modify crystallinity and, as a result,
mechanical properties of electrospun PLA mats. The amorphous
electrospun poly-L-lactide (PLLA) mats developed an amount of crystal
phase up to 20% during an ethanol treatment at room temperature (RT)
because of the plasticizing effect of ethanol, which enlarged the temper-
ature window of the PLLA crystallization to RT [14]. The authors ob-
served the crystallinity increase of fixed electrospun PLLA mats upon
treatment in absolute ethanol, which occurred on the scale of a few
hours and resulted in the formation of α-phase of PLLA. Liu and col-
leagues [15] noted that the residual stress of polymer chains during eth-
anol treatment could be converted either into increased crystallinity (in
case of the electrospun mat fixation) or into shrinkage with the forma-
tion of crimped fibers (in case of the free-ends mats treatment).
Fig. 1. The general scheme of experiments: a) electrospun PLA samples, b) t
Increased crystallinity caused an increase in Young's modulus, while
the crimped fibers' structure was accompanied by the lower crystallin-
ity and a higher yield strain. However, Chao and co-authors [21] re-
ported about crystallinity increase of electrospun PLLA mats with
crimped fibers prepared by heating or ethanol treatment. Finally, the
ethanol-treated crimped electrospun fibers demonstrated promising
biomechanical properties [15,16]. The crimped fibers imitated themor-
phology of collagen fibrils, which constitute the extracellular matrix
(ECM) [22]. For example, electrospun PLCL crimped fibers provided
good attachment and proliferation of bovine fibroblasts [16]. The prolif-
eration rate of mouse fibroblasts on ethanol sterilized electrospun
polycaprolactone (PCL) and PLCL mats was faster than on ethylene
oxide treated ones [23], presumably, due to the crimped fibers' struc-
ture. Therefore, the potential applications of the discussed phenomena
remain underestimated.

In the present work, we thoroughly analyzed several aspects of the
treatment of electrospun PLA mats with ethanol (Fig. 1). We investi-
gated the shrinkage kinetics and mechanical properties of ethanol-
treated electrospun PLA mats with free and fixed ends. The usage PLA
with a small fraction of D-isomer helped us to avoid crystallinity in-
crease during ethanol treatment and a possible decrease of extensibility.
We proposed a new method to obtain aligned fibers by stretching of
electrospun PLA mats in ethanol. This method seemed simpler than
the routine usage of a special collector electrode (a pair of blades) and
provided higher alignment of the fibers. We demonstrated that the
mats manufactured by our method induced cell elongation and can be
used cell contact guidance studies.

2. Materials and methods

2.1. Electrospinning process

Electrospunmats were prepared using the Nanofiber Electrospinning
Unit apparatus (China) from 100 mg/ml solution of polylactide (REC,
Russia) in 1,1,1,3,3,3-hexafluoroisopropanol (P&M-Invest, Russia). We
used PLA with the 4.5% fraction of D-isomer, according to the supplier.
Two types of mats were obtained: non-aligned and aligned. The non-
aligned mats were obtained on a polypropylene frame positioned
ypes of ethanol treatment, c) characterization of the electrospun mats.
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between two electrodes: the feeding syringe needle and a counter-
electrode [24]. The aligned mats were produced using two parallel
metal blades as the collector. The accelerating voltage and distance be-
tween the needle and the second electrode were 30 kV and 30 cm, re-
spectively. The polymer solution was supplied at a rate of 1 ml/h, the
inner diameter of the syringe needle was 0.7 mm. Also, high-aligned
mats were obtained from the ordinary non–aligned electrospun mats
by two times stretching them in ethanol. To obtain quantitative informa-
tion on the extent of geometrical orientation of the fibers upon uniaxial
stretching, we calculated the geometrical Herman orientation factor (fg)
[25] as the P2 Legendre polynomial:

f g ¼ 1
2
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whereα is an angle betweenfiber, as observedby SEM, and the stretching
direction; D(α) is the orientation distribution function.

2.2. Shrinkage kinetics

To determine the electrospunmats shrinkage kinetics, the images of
themats immersed into ethanol were taken every 2 s by LogitechWeb-
cam C925e using Webcam Surveyor 3.6.1. The initial size of each mat
was either 4 × 4 cm2, 3 × 3 cm2 or 2 × 2 cm2. Sometimes the ethanol im-
mersion of mats led to their rollup. Therefore, only those mats that
remained flat during the whole shrinkage process were chosen for cal-
culations. The linear sizes and areas of the mats were measured using
the FIJI software. The same calculations were performed for the
electrospun mats immersed into butanol.

2.3. Mechanical study

Mechanical studies of the PLA electrospun mats were performed
using universal electromechanical test machine Autograph AGS-10
kNG (Shimadzu, Japan). The size of each sample stretched area was 20
× 5 mm2, the mat's thickness was in the range from 100 μm to 200
μm. Four types of tensile tests were carried out (Fig. 1): stretching of
the electrospun PLA mats in air and ethanol, stretching of the PLA
electrospun mats after the ethanol immersion (either fixed-ends or
free-ends) and drying in Vacuum drying chamber (BINDER, USA) dur-
ing 4 h at room temperature. All the tensile tests were carried out at
an elongation rate of 5 mm/min. Also, the stress versus time depen-
dence was recorded during the ethanol treatment of the fixed-ends
samples. Experiments of each typewere carried out at least three times.
Fig. 2. Shrinkage kinetics of electrospun PLA mats investigated by a) controlling of mats area
independent experiment. Slight differences between the lines can be associated with variation
2.4. Cell culturing

In order to provide better cell adhesion and attachment each PLA
mat was incubated in 1 ml of 0.1 mg/ml poly-l-ornithine solution for
half an hour at room temperature. Then specimens were rinsed with
water three times and left for 2 h at room temperature for drying.
After that, HaCaT human keratinocytes were seeded onto poly-L-
ornithine-coated electrospun mats (20,000 cells/ml) and cultivated in
complete growth medium DMEM (Paneco, Russia) with 10% fetal bo-
vine serum (HyClone, United States), 4 mM L-glutamine (Paneco,
Russia), and gentamicin (53 μg/ml, Borisov Plant of Medical Prepara-
tions, Belarus) for 20 h.

2.5. Cell proliferation and viability tests

The assessment of proliferative activity was performed on 1, 3 and
5 days of experiment by counting cell numbers in 20 random micro-
scopic fields of view after Hoechst 33258 and propidium iodide staining
with the FIJI software. All specimens were investigated with 10x/0.25
lens of fluorescent microscope Axio Lab.A1 (Zeiss, Germany) using DS-
F12 camera (Nikon, Japan).

2.6. Scanning electron microscopy (SEM)

For SEM examination HaCaT human keratinocytes were fixed with
2.5% glutaraldehyde in PBS for 2 h at room temperature, gradually
dehydrated in ethanol and chemically dried with hexamethyldisilazane
as described in [26]. Both electrospun mats and cells were covered by
10 nm gold palladium alloy using Sputter Coater Q150T (Quorum Tech-
nologies, UK).Mats andHaCaT human keratinocyteswere characterized
using a Zeiss Merlin microscope equipped with GEMINI II Electron Op-
tics (Zeiss, Germany) at 1–3 kV accelerating voltage and 70–100 pA
probe current. The average fiber diameter and the fiber orientation
were calculated using plugin DiameterJ in the FIJI software [27].

2.7. WAXS measurements

WAXS measurements were performed using a XeuSS SAXS/WAXS
(Xenocs, France) machine coupled to a GeniX3D generator (λ = 1.54
Å) for initial PLA, electrospun mats before and after 2, 10 and 30 min
ethanol treatment either free- and fixed-ends. We also investigated
the PLA mats stretched in air or ethanol with the elongation 40–60%
and 100% respectively (Fig. 1). The air-stretched mats deformed non-
uniformly via necking mechanism and ruptured; thus, WAXS analysis
was carried out in near the rupture area. All the other samples were rel-
atively uniform, so the examination points were chosen randomly. The
calculation of theWAXS orientation factor for uniaxially stretched mats
and b) recording of shrinkage force (stress). Each line on both graphs corresponds to an
s in mats thickness.



Fig. 4. Stress-strain curves of the electrospun mats. The duration of ethanol treatment
(blue and green lines) was 5 min with subsequent drying. The stretching of the mats in
ethanol (red line) was carried out immediately after ethanol addition.

Fig. 3. SEM images of electrospun mats before (a) and after (b) ethanol treatment for 10 min. Distribution of the fibers diameters before and after ethanol treatment (c).
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was performed using 2DWAXS data similarly to Eq. (1) and in linewith
the previous publications [25,28,29].

The 2D data were collected using a Rayonix HS170 CCD detector
(pixel size 132 × 132 μm) with the sample-to-detector distance of ap-
proximately 18 cm. The minimum projection method was used to re-
duce background noise. The modulus of the scattering vector was
calibrated using several diffraction orders of silver behenate powder.
Analysis of 2D-WAXS patterns was performed with the help of a
home-made routine designed Igor Pro software (Wavemetrics Ltd.).

2.8. Statistical data processing

Data processing was done using Origin (OriginLab, USA). The mea-
surement results presented in the text are shown as (Mean ± SD) un-
less indicated otherwise.

3. Results and discussion

3.1. Mats characterization and shrinkage kinetics

Treatment of electrospunPLAmats in ethanolwas accompanied by a
rapid reduction in the size of the mats. The ethanol-induced shrinkage
kinetics was characterized by the relative change of the mats area
(ΔS/S) as a function of time (Fig. 2a). This kinetics had three distinct
stages: ethanol penetration, rapid size reduction, and the plateau
stage. These three stages were also observed when the PLA mats were
treated with ethanol at constant size, and themechanical stress was re-
corded (Fig. 2b).

The first process took about 15 s and was accompanied by swelling
of the material which was confirmed by a decrease of stress (Fig. 2b).
The second process reflected the effect of PLA mats area reduction
from 35% to 55% and took no N30 s. Then the shrinkage process reached
the plateau, and the mats didn't decrease in size any further even after
ethanol removal. Assuming that ethanol diffuses through the whole
fiber volume and mean fiber radius (r) is 500 nm (shown below) we
calculated the diffusion coefficient (Det) of ethanol in PLA:

Det � r2

t
� 500 nmð Þ2

50 s
� 5 � 10−11cm2

s
;

t – average time of first two processes (ethanol penetration and the
rapid size reduction)

A similar shape of the shrinkage curve was observed for PLA mats in
butanol. However, penetration and size reduction process in butanol
took more time (Fig. S1) than in ethanol, which could be caused by a

lower diffusion coefficient: Dbut �
r2

t
� ð500 nmÞ2

75 min
� 6 � 10−13cm2

s:
Shrinkage of the mats was accompanied by two morphological

changes (Fig. 3): upon the ethanol treatment the fibers became crimped
(Fig. 3b), and theirmeandiameter increased (Fig. 3c). Thefiber diameters
before (meandiameter=570nm,median=560nm, SD=260nm) and
after (mean diameter = 600 nm, median = 560 nm, SD= 260 nm) the
ethanol treatment were significantly different according to Mann–
Whitney test (p b 0,01).

Both the fiber crimping and fiber diameter increase could be
comprehended qualitatively if we assume relaxation of oriented PLA
chains. Indeed, it is known that electrospinning often yields nanofibers
containing oriented polymer chains [30,31]. Due to entropic reasons,
the chain conformation tends to relax back to the isotropic coils when
heated [32] or treated with a plasticizer. The effect of fiber crimping
was more evident when the initial mats were aligned (Fig. S2).

3.2. Mechanical properties of electrospun mats before and after ethanol
treatment

Ethanol was found to significantlymodify themechanical properties
of electrospun mats. Ethanol made electrospun mats more stretchable
(Fig. 4). The elongation at break for the electrospun mats in ethanol is
approximately five times higher than the same value in air (Table 1),
which provides evidence for the plasticization effect of ethanol to PLA
(Fig. 4). The high elongation at break values were partially retained
after drying of the ethanol treated mats (Table 1).

The mechanical properties were different when ethanol immersion
was carried out in different conditions. In our mechanical experiments,
different types of the electrospunmats were used such as the ones with
free ends and fixed ends (Fig. 1). The fixed-ends mats did not shrink,
and their fibers were not crimped unlike the free-end samples
(Fig. S3). The two types of samples showed different values of Young's
modulus. Thus, the samples with fixed ends gave higher Young's



Table 1
Mechanical properties of the PLA electrospun mats. E -Young's modulus, σ - tensile strength, ε - elongation at break.

Before ethanol immersion (in air) In ethanol After ethanol immersion (fixed ends, in air) After ethanol immersion (free ends, in air)

E, MPa 88 ± 22 0.8 ± 0.1 100 ± 22 57 ± 12
σ, MPa 2.5 ± 0.9 1.6 ± 0.2 4.4 ± 0.9 2.6 ± 0.5
ε, % 49 ± 13 279 ± 13 110 ± 42 158 ± 43
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modulus than the sampleswith free ends (Table 1).We have two expla-
nations of this effect: an increase in crystallinity of the fixed-ends mats
after the ethanol treatment and morphology-related changes in the
elastic behavior of the free-ends mats. The first hypothesis did not find
support because all the mats were amorphous, according to WAXS
data (Fig. S4). Neither the free-ends mats nor the fixed-ends mats ex-
hibited crystalline diffraction peaks upon 30 min of ethanol treatment,
which is more than the shrinkage time. This result can be explained
by the presence of 4.5% fraction D-isomer and also by the relatively
short incubation time at RT. For example, effective crystallization (crys-
tallinity degree ~ 30%) of electrospun PLLA mats took N5 h during an-
nealing at higher temperature [14]. By contrast, the second hypothesis
is likely to be correct because the crimpedfibers can behave like springs:
Young's modulus of a spring is lower than themodulus of a rodmade of
the samematerial. In other words, crimped fiber structure could give an
additional mechanism of elastic deformation which resulted in a de-
crease of Young's modulus.

3.3. Mats stretching in ethanol

Highly aligned electrospun mats are often needed for biological ap-
plications as nerve guides [33,34], cardiovascular [35] and muscle [36]
grafting materials and matrixes for contact guidance investigation
[37,38]. Fabrication of aligned electrospun mats usually requires the
use of special electrodes like pairs of blades [39], rotating drums and
others [40]. However, it is often difficult to obtain highly aligned fibrous
mats by electrospinning. The fundamental reason which randomizes
the electrospun fibers alignment is the residual charge of the deposited
fibers, which «spoils» the orientation of the newly generated fibers as
the mat thickness increases [41]. Stretching of electrospun mats in a
plasticizer allows solving this problem because the fibers align along
the tensile direction entirely (Fig. 5). In this case, it is possible to align
the mats without the use of special electrodes during electrospinning.
According to distributions D(α) of fibers orientation (Fig. 5e), the
highest geometrical orientation factor fg (0.92) corresponded to mats
100% stretched in ethanol. The orientation factors fg (Eq. (1)) of mats
aligned on blades, mats stretched in air and non-aligned ones were
Fig. 5. Electrospun mats: (a) non-aligned, (b) aligned on blades, (c) 2 times stretch
0.71, 0.43 and 0.10 respectively (Fig. 5). Thus, alignment of electrospun
mats by stretching in a plasticizer is more preferable than alignment
using special collector electrode of two blades.

Moreover, we found that plasticizer protected fibers from multiple
neckingwhich appeared during stretching in air (Fig. 6). Multiple neck-
ing probably occurred during the plastic deformation process. There are
two main competing processes during plastic deformation: orientation
of the macromolecular chains and volume damage of the polymer
[42]. If the polymer is in a viscoelastic state, the molecular orientation
process dominates. Otherwise, the volume damaging process occurs
which results in formation of voids inside the polymer and necking. In
our case, the mobility of the macromolecular chains increased due to
the lowering of the glass transition temperature of the PLA by adding
theplasticizer. According toX-raydiffraction data (Fig. 7), the stretching
of the electrospun PLAmats in ethanol led to the increase of orientation
factor fWAXS comparing to the air-stretched mat. Analyzing the azi-
muthal distribution of the amorphous halo, the orientation factor
fWAXS for electrospun PLA mats stretched in ethanol was 0.65, while
the same parameter for the electrospun PLA mats stretched in air was
close to 0.10. The deformation of the air-stretched mats (ɛ in the range
40–60%) was lower than of those stretched in ethanol (ɛ~100%). How-
ever, WAXS analysis of the air-stretched mats was performed in the
neck area near the rupture, where the local deformation was maximum
(about 100–200%). Taking into account the values of the orientation fac-
tors fWAXS (WAXS analysis) and fg (SEMmeasurements), the molecular
orientation factor fm corresponding to an individual fiber can be calcu-
lated as fm = fWAXS/fg. The decomposition of fWAXS into the geometrical
and molecular orientation factors is similar for the problem of succes-
sive molecular rotations [43]. Using the obtained fm values, it can be
concluded that stretching of the PLAmats in ethanol caused higher mo-
lecular orientation (fm = 0.71) than stretching in air (fm = 0.23).

In the experiments, we did not observe the damaging of the
electrospun fibers stretched in ethanol (Fig. 6b). In contrast, the PLA fi-
bers stretched in air displayed multiple necking (Fig. 6a). The same ef-
fect occurred during the electrospinning process because of the
intense stretching of solidified nanofibers provoked by the strong elec-
tric field and the collector rotation [44].
ed in air, (d) stretched in ethanol. Distributions D(α) of fibers orientation (e).



Fig. 6. Electrospun mats: (a) stretched in air, (b) stretched in ethanol.
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3.4. Contact guidance of HaCaT human keratinocytes

Cell contact guidance is the changes in cell shape, adhesion and mi-
gration behavior induced by the substrate anisotropy [45,46]. Patterned
substrates with grooves, pillars or aligned fibers are usually used for the
contact guidance investigation [47,48]. In our previous works we dem-
onstrated the possibility of HaCaT keratinocytes contact guidance on
electrospun Nylon 6 and poly (ε–caprolactone) mats aligned by the
gap method [26,49,50]. In the present paper, we stretched the PLA
mats in ethanol to align the fibers and induce the cell contact guidance.

We used aligned PLA mats with fibers of relatively large (1.8 ± 0.8
μm) and small (0.5 ± 0.2 μm) diameters for the HaCaT cells cultivation.
Fig. 8 shows the cells grown on the large and small aligned fibers. For
the quantitative analysis of cell aspect ratio (the ratio of the linear
sizes of cell along the fibers and across them) we used only single
cells, so that cell shape depended on the local morphology of the mats
(fibers alignment, diameter, and pore size) only and the effect of cell-
cell interactions on cell shape could be excluded. Mean aspect ratios of
the cells grown on the mats consisting of the large and small fibers
were 3.4±1.7 and 3.0±1.6, respectively, andwere not statistically dif-
ferent at 0.05 level. For comparison, the aspect ratio of HaCaT cells
grown on the non-aligned electrospun PLA mats was significantly
smaller – 1.5 ± 0.6 (Fig. S5). This was in agreement with the previous
data obtained for HaCaT cells grown on the non-aligned electrospun
nylon mats [26]. Thus, stretching of the PLA mats in ethanol caused
fiber alignmentwhichwas high enough to induce cell contact guidance.

Although both types of aligned mats induced contact guidance, its
character varied. When cultured on the mats consisting of the 1.8 ±
0.8 μm fibers, the cells often leaned against one or two fibers and
could migrate into the pores (Fig. S6). On the contrary, when cultured
on the mats consisting of the 0.5 ± 0.2 μm fibers, the cells adhered to
Fig. 7. 2D X-ray diffraction patterns of PLA ma
a relatively large number of fibers (N N 10) and did not penetrate the
pores.

As described above, ethanol treatment of PLA mats changes their
mechanical properties and morphology. Thus, alignment of mats by
stretching them in ethanol may influence on proliferation of HaCaT
keratinocytes. We compared the proliferation of HaCaT cells grown
on the ethanol-stretched mats and the non-aligned ones. We
counted the total number of cells and the dead cells grown on the
aligned and random mats (the cells were stained with Hoechst and
propidium iodide correspondingly). The percentage of the dead
cells was b1% throughout all 5 days of the experiment for both
types of mats. Although the mean cell density was slightly larger
for the aligned mats, the difference between the non-aligned and
ethanol-stretched mats was not significantly different within each
day. The mean cell density was growing slowly within the experi-
ment (Fig. 9). Thus, we have demonstrated that the ethanol-
stretched mats and non-aligned mats are non-cytotoxic and main-
tain cell proliferation at the same level.

4. Conclusion

Treatment of electrospunmats with a plasticizer can be used to tune
theirmorphology in order to increase their biocompatibility [14,15]. The
list of the polymer-plasticizer pairs is almost infinite, and it opens a
massive list of opportunities for the properties adjustments of
electrospun mats. Based on the literature data, ethanol treatment of
electrospun mats could be accompanied by crystallization process. In
order to avoid crystallization, for example for enhancement of the mat
extensibility, we have selected PLA with a higher fraction of D-isomer
(4.5%) than in the previous works reporting slow crystallization of PLA
in absolute ethanol at RT.
ts stretched (a) in air and (b) in ethanol.



Fig. 8. HaCaT cells grown on the small (a) and large (b) aligned fibers.
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The influence of ethanol on PLA electrospun mats was investigated
at three levels:macro, micro, andmolecular. At themacro level, the eth-
anol treatment of free-ends mats led to shrinkage within 50 s at room
temperature. A similar effect was observed in butanol, but it took longer
time (N20 min) due to the relatively slow diffusion of butanol into PLA.
Ethanol made the PLA mats softer (decreased Young's modulus) and
more stretchable. At the micro level, the ethanol treatment of the free-
ends mats induced fibers crimping, while the fibers of the fixed-ends
mats remained straight. Stretching of the PLA mats in ethanol did not
lead to multiple necking (in contrast to stretching of the mats in air)
and could be used to obtain highly aligned mats. At the molecular
level, the intact and ethanol-treated PLAmats did not develop any crys-
tallinity in the timeframe of the experiment according to WAXS. At the
same time, WAXS showed enhanced molecular orientation in the mats
stretched in ethanol.

The conformation of polymer chains in electrospun fibers is still rel-
atively poorly described [30]. However, stretching of the electrospun
PLAmats in ethanol or other plasticizers can be regarded as a novel sim-
plemethod of producing highly alignedmats. Thismethod yields higher
fibers alignment than the gapmethod and does not require the rotating
mandrel setup [40]. Such highly aligned mats can be used to induce cell
contact guidance in biomedical applications. Contact guidance phenom-
enon can be used for tissue engineering because it might enhance the
nerve regeneration process [51], provide formation of continuous mus-
cle fibers [52] or induce alignment of cardiomyocytes for their synchro-
nized contractility [53]. Our experiments with the HaCaT cells revealed
high aspect ratio of the cells grown on the PLAmats stretched in ethanol
and did not show differences in viability and proliferation rate of HaCaT
cells grown on aligned and non-aligned mats. Further studies on single
electrospun fibers using Raman micro-spectroscopy and diffraction
techniques will provide more information on the micro-structure and
chain conformation in such systems.
Fig. 9. Proliferation dynamics of HaCaT keratinocytes grown on the ethanol-stretched
aligned PLA mats (fiber diameter d = 1.6 ± 0.7 μm) and the non-aligned mats (d =
1.6 ± 0.7 μm).
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.matdes.2019.108061.
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