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Abstract This year marks the 150th birthday anniversary of the outstanding seis-
mologist Fusakichi Omori. Our paper is devoted to this significant event. We found
that the well-known Omori law may be represented in the form of a differential equa-
tion describing the evolution of aftershocks. This allows us to formulate the inverse
problem of physics of the earthquake source which is “cooling down” after the main
shock. The paper gives the examples of solving the inverse problem and illustrates
a possibility to create the atlas of aftershocks after a series of strong earthquakes.
The atlas contains a description of the parameters, the original sequence of after-
shocks, and the so-called deactivation function for each event. The analysis of the
atlas showed a rich variety of the evolution forms of the earthquake source after the
main shock.
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1 Introduction

Our work is devoted to the memory of the outstanding Japanese scientist Fusakichi
Omori (1968-1923). In 1896, he discovered a hyperbolic dependence of the fre-
quency of aftershocks on time:

n(t) =k/(c +1). (1)
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And this was the first empirical law of the physics of earthquakes [1]. Here the
parameter k is the most important integral characteristic of the earthquake source that
“cools” after the main shock. The parameter c is of no interest to us in the context
of this work. In essence, (1) is the one-parameter formula.

So, the Omori law is represented by a rather rigid one-parameter formula. Many
authors have worked to make the Omori law more flexible. The idea of R. Hirano
and T. Utsu to replace the denominator in Formula (1) with the expression (¢ + ¢)?
was widely spread in the literature [2, 3]. Unlike the Omori formula, the Hirano-Utsu
formula is two-parameter.

We have chosen a different path, and our idea is this. On the one hand, we do not
want to introduce additional phenomenological parameters that do not have a geody-
namic meaning. That is, we want to leave the Omori formula with one parameter. On
the other hand, we would like to take into account the nonstationarity of rocks in the
earthquake source after the main shock. In other words, we must bear in mind that
the value of k depends on the time, thereby reflecting the nonstationary relaxation of
the of the earthquake source to a new metastable state.

However, it is impossible to replace k with k(¢) in Formula (1). We will do other-
wise. First, we make the following substitution k = 1/o. This is just a redefinition.
We will call o the deactivation coefficient. The value of o tells us how fast the earth-
quake source loses its ability to excite the aftershocks. Now we use the evolution
equation of aftershocks

dn/dt +on* =0, )

which is completely equivalent to the Omori law (1), if sigma does not change over
time. The advantage of the law in the form of a differential equation (2) is that now
nothing prevents us from taking into account the nonstationarity of the geological
environment after the main shock. We solve the equation and obtain a generalization
of the law of aftershocks evolution:

t -1

n(t) =npl 1 +n0/6(t’)dt/ 3)

0

Our version (3) preserves the hyperbolic structure of the Omori law, but it takes into
account that time in the earthquake source, figuratively speaking, flows unevenly [4].
If o = const, then in this and only in this case the generalized Formula (3) coincides
with the classical Omori Formula (1) up to notation.
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2 Inverse Problem of the Aftershocks Physics

We show that the generalized law of evolution (3) is useful for processing and ana-
lyzing of the aftershock sequences. Let us rewrite (3) in the form

AP S A
/O(I)t_m_;z_():g(t)' 4

Here g(¢) is an auxiliary function. It is known from experiment. This mathematical
expression resembles the Volterra integral equation of the first type (with trivial
kernel). This circumstance prompted us the idea to set and solve the inverse problem,
i.e. to find the unknown deactivation factor o by using the known frequency of
aftershocks n.

Like almost every inverse problem, our inverse problem is incorrectly posed.
Regularization consists in smoothing the auxiliary function: g(t) — (g(#)). Solution
of the problem is of the form

o(1) =d(g(t))/dt. ®)

3 Atlas of Aftershocks

According to the results of solving the inverse problem, we plan to release an “Atlas
of Aftershocks” (ATAS). Currently, about a dozen solutions have been accumulated
and in this section we want to show the first results. Let us say that we conceived
ATAS as a collective project.

Figure 1 gives an idea about the content of the atlas [5]. Here are three events that
occurred in California according to the catalogs http://www.data.scec.org and http://
www.ncedc.org. Aftershock frequencies n(t) are shown in the upper rows. Here are
the dates and magnitudes of the main shocks. The middle panels show auxiliary
functions g(t) before and after regularization. The bottom panels give an idea of the
variety of forms of the deactivation function o (#). We observe growing, decreasing
and oscillating fragments of o (¢). Let us pay special attention to the so-called Omori
epoch, i.e. for long time intervals, when the value of o is constant and, thus, the
Omori law (1) is strictly satisfied. The duration of Omori epoch varies from case to
case in a wide range. According to the presence or absence of the Omori epoch and
other characteristic properties of the function o (#) one can try to make a classification
of earthquake sources in the course of further work.

One more interesting event is shown in Fig. 2. In Southern California at a close
(~1 km) distance from each other, three rather strong earthquakes occurred: the first
with M = 5.4 at 22 h 39 m 59 s 1995.08.17, the second with M = 5.8 after 34 days


http://www.data.scec.org
http://www.ncedc.org
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Fig. 1 The first three sheets of an aftershocks atlas (please, see the text)

at a distance of about 1 km, the third with M = 5.8 after 120 days at a distance of
about 1 km from the second.

In the framework of the ATAS project, we want to consider the earthquake source
as adynamic system. It is known that the construction of phase portraits is an effective
means in the study of dynamical systems. There is an idea to represent the evolution
of aftershocks in the form of a trajectory in the phase planes. Examples of phase
portraits of the earthquake source are presented in Fig. 3.

Here we used the data on earthquakes presented in Fig. 2. The top panel in Fig. 3
gives an idea of the portrait in the phase plane (g, o). The point on the phase trajectory
shows the initial state of the dynamical system, and the arrow indicates the direction
of the system’s movement along the trajectory. In the bottom panel we see the phase
portrait in the plane (o, ¢), where 0 = do/dt. We hope that the phase portraits of
such sort will make it possible to produce a specific classification of the earthquake
sources.

4 Discussion

It is clear that observations are the main source of our knowledge, and we also
understand that the selection of empirical formulas plays a key role in systematizing
our experience. Sometimes the empirical formula turns out to be fundamental.
Omori proposed the one-parameter formula to describe the flow of aftershocks.
However, another empirical formula, namely, the two-parameter Hirano-Utsu for-
mula, has become widely spread in seismology. The simple and elegant Omori For-
mula (1) was forgotten, its hidden possibilities were not realized and were not used.
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Fig. 2 Earthquakes in Southern California. Top panel shows the distribution of the aftershocks
number on the earth’s surface. The bottom panel shows three strong earthquakes and their aftershock
sequences in the epicentral zone with a radius of 0.2° from August 17, 1995 till March 14, 1996
(black line) and the corresponding deactivation function o(t) (red line)

Fig. 3 Phase portraits of the
earthquake source in the
planes (g, o) and (o, 6) (top
and bottom panels
correspondingly)
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The situation changed after we replaced Formula (1) with differential equation (2).
The prospect of generalization (3) was opened immediately.

The differential equation of evolution (2) suggests also other interesting general-
izations. For example, we can add a diffusion term to the right-hand side of (2) to
take into account the space-time distribution of aftershocks:

an/dt +on® = DV’n. (6)

Here D, generally speaking, should be considered as a tensor D= diag (D), D)
in order to take into account the anisotropy of faults in the earth’s crust, D > D, .

5 Conclusion

The well-known Omori law (1) we presented in the form of differential equation (2)
describing the evolution of aftershocks. The evolution equation of aftershocks gave us
the opportunity to set the inverse problem of physics of the earthquake source, which
is “cooling down” after the main shock. The essence of the inverse problem consists
in determining the deactivation function o (¢) from the frequency of aftershocks n()
known from observation. We presented a concrete example of solving the inverse
problem. There is no doubt that the use of our aftershock processing technique opens
up new experimental possibilities.

We are planning to create an atlas of aftershocks after the strong main shocks.
The atlas will contain a description of the basic parameters, the initial sequence of
aftershocks, the function of deactivating the source o (¢) and the phase portrait for
each event. A preliminary analysis revealed the exceptional wealth of the evolutionary
forms of earthquake source after the main shock.
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