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SPECHT’S PROBLEM FOR ASSOCIATIVE AFFINE ALGEBRAS

OVER COMMUTATIVE NOETHERIAN RINGS

ALEXEI BELOV-KANEL, LOUIS ROWEN, AND UZI VISHNE

Abstract. In a series of papers by the authors we introduced full quivers
and pseudo-quivers of representations of algebras, and used them as tools in
describing PI-varieties of algebras. In this paper we apply them to obtain a
complete proof of Belov’s solution of Specht’s problem for affine algebras over
an arbitrary Noetherian ring. The inductive step relies on a theorem that
enables one to find a “q̄-characteristic coefficient-absorbing polynomial in each
T-ideal Γ”, i.e., a nonidentity of the representable algebra A arising from Γ,
whose ideal of evaluations in A is closed under multiplication by q̄-powers of
the characteristic coefficients of matrices corresponding to the generators of A,
where q̄ is a suitably large power of the order of the base field. The passage
to an arbitrary Noetherian base ring C involves localizing at finitely many
elements a kind of C, and reducing to the field case by a local-global principle.

Contents

1. Introduction 5553
2. Preliminary material 5556
3. Review of quivers of representations 5563
4. Evaluations of polynomials arising from algebras of full quivers 5567
5. Solution of Specht’s problem

for affine algebras over finite fields 5579
6. A solution of Specht’s problem for PI-proper T-ideals

of affine algebras over arbitrary commutative Noetherian rings 5582
7. The case where the T-ideals are not necessarily PI-proper 5592
References 5595

1. Introduction

Until §6, all algebras are presumed to be associative (not necessarily with unit
element), over a given commutative ring C having unit element 1. The free (as-
sociative) algebra is denoted by C{x}, whose elements are called polynomials.
The T-ideal of a set of polynomials in an algebra A is the ideal generated by all
substitutions of these polynomials in A. For example, the set id(A) of polynomial
identities of an algebra A is a T-ideal of C{x}. A T-ideal is finitely based if it
is generated as a T-ideal by finitely many polynomials. For example, when A is a
commutative algebra over a field of characteristic 0, id(A) is finitely based, by the
single polynomial [x1, x2] = x1x2 − x2x1.
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5554 ALEXEI BELOV-KANEL, LOUIS ROWEN, AND UZI VISHNE

Our objective in this paper is to complete the affirmative proof of the affine
case of Specht’s problem, that any affine PI-algebra over an arbitrary commuta-
tive Noetherian ring satisfies the ACC (ascending chain condition) on T-ideals, or,
equivalently, any T-ideal is finitely based. In characteristic 0 over fields, this is the
celebrated theorem of Kemer [17]. When char(F ) > 0 there are nonaffine coun-
terexamples [2, 13], with a straightforward exposition given in [9], so the best one
could hope for is a positive result for affine PI-algebras. Kemer [18] proved this
result for affine PI-algebras over infinite fields, and Belov extended the theorem
to affine PI-algebras over arbitrary commutative Noetherian rings, in his second
dissertation, with the main ideas given in [3]. We give full details of the proof
(over arbitrary commutative Noetherian rings), cutting through combinatoric com-
plications by utilizing the full strength of the theory of full quivers as expounded
in [6],[7], and [8]. Actually, working over arbitrary commutative Noetherian base
rings raises the question of the ACC for T-ideals of algebras that do not satisfy a
PI (because the coefficients of the identities need not be invertible), but we still can
obtain a positive solution in Theorem 7.6.

Note that there is no hope for such a result over a non-Noetherian commutative
base ring C, because of the following observation:

Lemma 1.1. If I �C, then IA is a T-ideal of A. In particular, IC{x} is a T-ideal
of C{x}.

Proof. Clearly IA � A, and it is closed under endomorphisms. �

Consequently, any chain of ideals of C gives rise to a corresponding chain of
T-ideals.

The positive solution to Specht’s problem has structural applications, extending
Braun’s Theorem on the nilpotence of the radical of a relatively free algebra to the
case where the base ring is Noetherian; cf. Theorem 7.12.

It might be instructive to indicate briefly where our approach differs from Ke-
mer’s characteristic 0 approach. Kemer first obtains his deep Finite Dimension-
ality Theorem that any algebra is PI-equivalent to a finite dimensional algebra
A. Extending the base field, one may assume the base field K is algebraically
closed, so Wedderburn’s principal theorem enables one to decompose A = Ā⊕J as
vector spaces, where J is the radical of A and Ā can be identified with the algebra
A/J . In two deep lemmas, exposed in [5, Section 4.4], Kemer shows that the nilpo-
tence index of J and the vector space dimension of Ā over K can be described as
invariants in terms of evaluations of polynomials on A, and then working combi-
natorically he shows that these computational invariants can be used to prove his
Finite Dimensionality Theorem. Kemer’s Finite Dimensionality Theorem fails for
algebras over finite fields. Thus, we need some other technique, and we turn to the
theory of quivers of representations of algebras into matrices, which were described
computationally in [7] and [8].

Recall [5, pp. 28ff.] that an algebra A over an integral domain C is repre-
sentable if it can be embedded as a C-subalgebra of Mn(K) for a suitable faithful
commutative C-algebra K ⊃ C (which can be much larger than C). In [7] we
considered the full quiver of a representation of an associative algebra over a field,
and determined properties of full quivers by means of a close examination of the
structure of Zariski closed algebras, studied in [6].
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SPECHT’S PROBLEM OVER COMMUTATIVE NOETHERIAN RINGS 5555

The full quiver (or pseudo-quiver) is a directed, loopless graph without cycles,
in which vertices correspond to simple subalgebras and edges to elements of the
radical. A maximal subpath of this graph is called a branch. In place of Kemer’s
lemmas, we utilize the combinatorics of the full quiver to compute the invariants
described above.

Our affirmation of Specht’s problem (in the affine case) is divided into two stages:
First we assume that the base ring C is a field F of order q (where q could be
infinity). Recall, when q < ∞, that q is a power of p = char(F ) < ∞, and the
Frobenius map a �→ aq is an F -algebra endomorphism.

In the second stage, using ring-theoretic methods, we reduce from the case of a
general ring C to the situation of the first stage.

The main difficulty in this approach is to discern whether the algebras we are
working with actually are representable. When the base ring is an infinite field F ,
Kemer [17] proved that any relatively free affine F -algebra is representable; this
is also treated in [3] for F finite, but the proof is rather difficult. Consequently,
we plan to treat the representability theorem in a separate paper. Although this
decision enables us to provide a quicker and more transparent proof of Specht’s
problem, it forces us to consider T-ideals I for which C{x}/I need not a priori be
representable. Accordingly, we need some method for “carving out” T-ideals I for
which C{x}/I is representable.

In [8], a trace-absorbing polynomial for an algebra A is defined as a non-

identity of A whose T-ideal is also an ideal of the algebra Â obtained by taking A
together with the traces adjoined. The main result of [8] was that such polynomials
exist for relatively free algebras. Explicitly, we proved the following:

• Trace Adjunction Theorem ([8, Theorem 5.16]). Any branch of a basic full
quiver of a relatively free algebra A naturally gives rise to a trace-absorbing
polynomial of A.

The Trace Adjunction Theorem provides a powerful inductive tool. For example,
as indicated in [9], it streamlines the proof of the rationality of Hilbert series of
relatively free algebras.

In this paper we need to consider more generally the characteristic coefficients
of a matrix a, by which we mean the coefficients of its characteristic polynomial

λn +
∑n−1

k=0 αkλ
k. The k-th characteristic coefficient of a is αk. For example,

the trace and determinant are respectively the (n − 1)-th and 0-th characteristic
coefficients. In characteristic 0 one can recover all the characteristic coefficients
from the traces, which is why we only dealt with traces in [8]. But here we need to
generalize the result to arbitrary characteristic coefficients. Furthermore, since the
multilinearization process cannot be reversed over a finite field, we cannot prove
theorems about absorbing arbitrary characteristic coefficients in this case, but must
content ourselves with absorbing q̄-powers of characteristic coefficients, which we
call q̄-characteristic coefficients, for q̄ a suitable power of q = |F |. (In fact, for
technical reasons involving the quiver, we need to use an idea of Drensky [12] and
consider symmetrized characteristic coefficients; cf. Definition 4.23.)

Thus, we generalize “trace-absorbing polynomials” to “q̄-characteristic coef-
ficient-absorbing polynomials” (cf. Definition 4.3) for the inductive step in the
solution of Specht’s problem. We do not prove here that affine PI-algebras are
representable (one of the keystones of Kemer’s theory in characteristic 0); this
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involves a more intense study of full quivers, which we leave for a later paper. Nev-
ertheless, once we have answered Specht’s problem affirmatively for representable
relatively free, affine algebras in Theorem 5.6, the passage to Noetherian base rings
enables us to verify Specht’s problem for all affine PI-algebras in Theorem 6.22,
and an elementary module-theoretic argument yields the result for all varieties in
Theorem 7.6.

Our approach parallels [8], but with an emphasis on working inside the set of
evaluations of a given non-identity f of the algebra A. Although as formulated in
[8, Theorem 5.16], the Trace Adjunction Theorem enables us to obtain characteristic
coefficient-absorbing nonidentities; here we need to find a nonzero substitution
inside f . This is done in Theorem 4.24, but at the cost of a considerably more
involved proof than that of [8, Theorem 5.12]. For starters, in characteristic p,
the multilinearization procedure degenerates in the sense that one cannot recover
a polynomial from specializations of its multilinearizations. This means that one
could have a proper inclusion of T-ideals which contain exactly the same multilinear
polynomials (seen for example by taking the Boolean identity x2+x in characteristic
2, whose multilinearization is just the identity of commutativity), so the inductive
step in Specht’s problem requires coping with A-quasi-linear (and A-homogeneous)
polynomials rather than just with multilinear polynomials. Ironically, working in
characteristic p does yield one step that is easier, which is given in Lemma 4.2.

Recall that the trace-absorbing polynomial of [8, Theorem 5.12] is obtained by
means of a “hiking procedure” which forces substitutions of the polynomial into
the radical. The main innovation needed here in hiking arises from the necessity
to deal with several monomials of our polynomial f at a time, which was not the
case in [8]. Thus, we introduce hiking of “higher stages”, in particular stage 2
hiking, which eliminates substitutions of f in the “wrong” matrix components,
stage 3 hiking, which differentiates the sizes of the base fields of the different
components of maximal matrix degree, and stage 4 hiking, which removes hidden
radical substitutions.

Two definitions of actions by characteristic coefficients (one in terms of matrix
computations and one in terms of polynomial evaluations) can be defined on the
T-ideal that is generated by this polynomial, which thus is a common ideal of A
and the algebra Â obtained by adjoining traces to A, and Â is Noetherian by Shir-
shov’s Theorem [5, Chapter 2]. We perform the same reasoning for q̄-characteristic
coefficient-absorbing polynomials, but also need stage 4 hiking in Lemma 4.25, in
order to identify these two actions. This enables us to pass to Noetherian algebras
and conclude the verification of Specht’s problem for algebras over arbitrary fields,
in Theorem 5.6.

The extension to algebras over an arbitrary commutative Noetherian base ring
C is given in Theorems 6.22 and 7.6. The proof has a different flavor, based on
considerations about C-torsion which lead to a formal reduction to the case that C
is an integral domain, in which case we repeatedly apply a version of a local-global
principle and conclude by passing to its field of fractions and applying the results
from the previous paragraph.

2. Preliminary material

Let us start by reviewing the background, especially about full quivers, their
relationship with relatively free algebras, and the polynomials that they yield.
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2.1. Characteristic coefficients of matrices. We start with some observations
about characteristic coefficients of matrices, which we need to utilize in character-
istic p.

Any matrix a ∈ Mn(K) can be viewed either as a linear transformation on the
n-dimensional space V = K(n), and thus having Hamilton-Cayley polynomial fa
of degree n, or (via left multiplication) as a linear transformation ã on the n2-

dimensional space Ṽ = Mn(K) with Hamilton-Cayley polynomial fã of degree n2.

Remark 2.1. The matrix ã can be identified with the matrix

a⊗ I ∈ Mn(K)⊗Mn(K) ∼= Mn2(K),

so its eigenvalues have the form β ⊗ 1 = β for each eigenvalue β of a.

Lemma 2.2. With the notation as above, fã = fn
a over any integral domain of

arbitrary characteristic.

Proof. By a standard specialization argument, it is enough to check the equality
over the free commutative ring Z[ξ1, ξ2, . . . ], which can be embedded into an alge-
braically closed field of characteristic 0. By Zariski density, we may assume that a
is diagonal, in which case it is clear that the determinant of ã is det(a)n. But then
we conclude by taking λn − a instead of a. �

Lemma 2.2 is often used in conjunction with the next observation.

Lemma 2.3. Suppose a ∈ Mn(F ), with char(F ) = p, and fa = |λI − a| =
∑

αiλ
i

is the characteristic polynomial of a. Then, for any p-power q̄,
∑

αq̄
iλ

i is the
characteristic polynomial of aq̄.

Proof. Follows from fap(λp) = |λpI − ap| = |λI − a|p = fa(λ)
p. �

Proposition 2.4. Suppose a ∈ Mn(F ). Then the characteristic coefficients of a
are integral over the F -algebra C generated by the characteristic coefficients of ã.

Proof. The integral closure C̄ of C contains all the eigenvalues of ã, which are the
eigenvalues of a, so the characteristic coefficients of ã also belong to C̄. �
Definition 2.5. The αq̄

i of Lemma 2.3 are called the q̄-characteristic coefficients
of a.

Remark 2.6. We choose q̄ sufficiently large so that the theory will run smoothly. By
[5, Remark 2.35 and Lemma 2.36], when q̄ > n (which is greater than the nilpotence
index in the Jordan decomposition), then the matrix aq̄ is semisimple.

2.2. Varieties of PI-algebras. We work with polynomials in the free algebra built
from a countable set of indeterminates over the given commutative Noetherian base
ring C. The set id(A) is well known to be a T-ideal of the free algebra C{x}. More
generally, given a polynomial f , we define 〈f(A)〉 to be the ideal generated by A.
Thus, 〈f(A)〉 = 0 iff f ∈ id(A).

A polynomial is blended if each indeterminate appearing nontrivially in the
polynomial appears in each of its monomials. As noted in [8, Remark 22.18], any
T-ideal is additively spanned by T-ideals of blended polynomials, and we only
consider blended polynomials throughout this paper.

Given a T-ideal I of the free algebra C{x}, we can form the relatively free
algebra C{x}/I, which is free in the class of all PI-algebras A for which id(A) ⊆ I.
Using this correspondence, it is enough to classify relatively free algebras.
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We continue by taking our base ring to be a field F , and we investigate relatively
free PI algebras in terms of the full quivers of their representations, making use of
generic elements, as constructed in [6, Construction 7.14] and studied in [6,
Theorem 7.15]. (A generic element of a finite dimensional algebra having base
{b1, . . . , bn} over an infinite field is just an element of the form

∑
ξibi, where the

ξi are indeterminates, but the situation for algebras over a finite field becomes
considerably more intricate.)

As in [8], we rely heavily on the Capelli polynomial

ck(x1, . . . , xk; y1, . . . , yk) =
∑
π∈Sk

sgn(π)xπ(1)y1 · · ·xπ(k)yk

of degree 2k (cf. [5]). Any C-subalgebra of Mn(K) satisfies the identities ck for all
k > n2.

Recall that a polynomial f which is linear in the first t variables is t-alternating
if substituting xj �→ xi results in 0 for any 1 ≤ i < j ≤ t.

Definition 2.7. We denote by hn the n2-alternating central polynomial on n× n
matrices [5, p. 25]. (We formally define h0 = 1, and also have h1 = x1 and h2 = c4g
where g is the multilinearization of the central polynomial [y1, y2]

2 for 2×2 matrices,
where we use fresh indeterminates for c4.)

When appropriate, we write hn(x) to emphasize that hn is evaluated on inde-
terminates x1, x2, . . . .

The central polynomial hn is a crucial polynomial for our deliberations, since it
is always central for Mn(C) regardless of the commutative base ring C.

2.3. Quasi-linear functions and quasi-linearizations. Although the theory
works most smoothly for multilinear polynomials, in characteristic p we do not
have the luxury of being able to recover a (blended) polynomial from its multilin-
earization, the way we can in characteristic 0. For example, one cannot recover
the Boolean identity x2 − x from its multilinearization x1x2 + x2x1, which holds in
any commutative algebra of characteristic 2. Thus, we must stop the linearization
process before arriving at multilinear identities.

It is convenient at times to work slightly more generally with functions rather
than polynomials, in order to be able to apply linear transformations.

Definition 2.8. A function f is i-quasi-linear on A if

f(. . . , ai + a′i, . . . ) = f(. . . , ai, . . . ) + f(. . . , a′i, . . . )

for all ai, a
′
i ∈ A; f is A-quasi-linear if f is i-quasi-linear on A for all i.

Quasi-linear polynomials are used heavily by Kemer in [18]. In contrast to [8]
in which quasi-linear polynomials played a somewhat secondary role, here they are
at the forefront of the theory, since we cannot avoid finite fields. Accordingly, we
need to develop them here, expanding on [5, Exercise 1.9 and 1.10].

Remark 2.9. When char(F ) = p, any pt power of an A-quasi-linear central polyno-
mial is A-quasi-linear.

Any identity of A is obviously A-quasi-linear, since the only values are 0, so
quasi-linear polynomials are only interesting for nonidentities.
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Lemma 2.10. If f is A-quasi-linear in xi, then

f(a1, a2, . . . , ai,1 + · · ·+ ai,di
, . . . ) =

di∑
j=1

f(a1, a2, . . . , ai,j , . . . ), ∀ai ∈ A.

Proof. The assertion is immediate from the definition. �

As usual, for any monomial h(x1, x2, . . . ), define degi h to be the degree of h in
xi. For any polynomial f(x1, x2, . . . ), define degi f to be the maximal degree degi h
of its monomials; the sum of all such monomials is called the leading i-part of f .

Definition 2.11. Suppose f(x1, x2, . . . ) ∈ C{x} has degree di in xi. The i-partial
linearization of f is

(1) Δif := f(x1, x2, . . . , xi,1 + · · ·+ xi,di
, . . . )−

di∑
j=1

f(x1, x2, . . . , xi,j , . . . ),

where the substitutions were made in the i component, and x1,1, . . . , x1,di
are new

variables.

Note that the i-partial linearization procedure lowers the degree of the poly-
nomial in the various indeterminates, in the sense that the degree in each xi,j is
less than di. It follows at once that applying the i-partial linearization procedure
repeatedly, if necessary, to each xi in turn in any polynomial f , yields a polynomial
that is A-quasi-linear.

In [18] and [8], quasi-linearizations had been defined slightly differently, as ho-
mogeneous components of partial linearizations as defined in (1); when f belongs
to a variety V defined over an infinite field, these remain in V . However, in [9, Ex-
ample 2.2] we saw that over a finite field these homogeneous components might
not necessarily stay in the same variety, which is the reason we have modified the
customary definition.

Formally, this procedure is slightly stronger than that given in [8], but yields the
following nice result:

Proposition 2.12. Suppose char(F ) = p and di = degi f is not a p-power. Then
the leading i-part of f can be recovered from a suitable specialization of the leading
k-part of an i-partial linearization of f , for suitable k.

Proof. Taking k such that
(
di

k

)
is not divisible by p, we note that (1) has

(
di

k

)
terms

of degree k in xi,1 and degree di − k in xi,2, so we specialize xi,1 �→ xi, xi,2 �→ 1,
and all other xi,j �→ 0. �

Corollary 2.13. For any polynomial f which is not an identity of A, the T-ideal
generated by f contains an A-quasi-linear nonidentity for which the degree in each
indeterminate is a p-power, where p = char(F ).

Proof. Apply Proposition 2.12 repeatedly, until the degree in each indeterminate is
a p-power. �

2.4. Radical and semisimple substitutions.

Remark 2.14. When studying a representation ρ :A → Mn(K) of an algebra A, we
usually identify A with its image. In case A is an algebra over a field, we write
A = S ⊕ J , the Wedderburn decomposition into the semisimple part S and the
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5560 ALEXEI BELOV-KANEL, LOUIS ROWEN, AND UZI VISHNE

radical J . Then we can choose the representation such that the Zariski closure of
A has the Wedderburn block decomposition of [6, Theorem 5.7], in which the
semisimple part S is written as matrix blocks along the diagonal.

A semisimple substitution (into a Zariski closed algebra A) is a substitution
into an element of S in some Wedderburn block of A, and a radical substitu-
tion is a substitution into an element of J in some Wedderburn block. A pure
substitution is a substitution that is either a semisimple substitution or a radical
substitution, i.e., into S ⊕ J .

Definition 2.15. Write A = S ⊕ J , the Wedderburn decomposition into the
semisimple part S and the radical J . A semisimple substitution (into a Zariski
closed algebra A) is a substitution into an element of S in some Wedderburn block of
A, and a radical substitution is a substitution into an element of J in some Wed-
derburn block. A pure substitution is a substitution that is either a semisimple
substitution or a radical substitution, i.e., into S ⊕ J .

Remark 2.16. By [8, Remark 2.20], one can check whether an A-quasi-linear poly-
nomial f(x) is a PI of A merely by specializing the indeterminates xi to pure
substitutions.

More generally, let f be any polynomial. Given a substitution f(x1;x2, . . . ), if
we specialize x1 �→ x1,1 + x1,2, then

(2) f(x1;x2, . . . ) = f(x1,1;x2, . . . ) + f(x1,2;x2, . . . ) + Δf(x1,1, x1,2;x2, . . . ),

where Δf is obtained from the 1-partial linearization by specializing x1,j �→ 0 for
all j > 2 and then discarding these x1,j from the notation.

One can interpret Equation (2) as follows:

Lemma 2.17. Suppose that x1 has some specialization x1 �→
∑

x1,j where the
x1,j are pure substitutions. (For example, some of them might be semisimple
and others radical.) Then all specializations involving “mixing” the x1,j occur in
Δf(x1,1, x1,2, x2, . . . ).

Proof. The “mixed” substitutions do not occur in the first two terms on the right
side of Equation (2). �

Lemma 2.17 enables us to apply the quasi-linearization procedure on specific
substitutions of A, rather than on all of A, and will be needed when studying
specific specializations of a polynomial f . If f were linear in x1, then we could
separate these into distinct specializations of f . But when f is nonlinear in x1, we
often need to turn to Lemma 2.17.

In [18], the definition of quasi-linear also included homogeneity, which can be ob-
tained automatically over infinite fields. Here again, since we are working over finite
fields, we need to be careful. We say that a function f is i-quasi-homogeneous
of degree si on A if

f(. . . , αai, . . . ) = αsif(. . . , ai, . . . )

for all α ∈ F, ai ∈ A, and f(x1, . . . , xt; y1, . . . , ym) is A-quasi-homogeneous of
degree s on A if f is i-quasi-homogeneous on A of degree si for all 1 ≤ i ≤ t, with
s = s1 · · · st.

The next lemma shows the philosophy of our approach, although we cannot use
it directly because we are working over finite fields.
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Remark 2.18. Suppose f =
∑

fj ∈ I, where each fj is i-quasi-homogeneous of
degree si,j on A. Then fixing some j0 and taking s = si,j0 yields

f(. . . , αai, . . . )− αsf(. . . , ai, . . . ) =
∑
j �=j0

(αsi,j − αs)fj(. . . , ai, . . . ).

This lowers the number of i-homogeneous components of f , and provides an induc-
tive procedure for reducing to quasi-homogeneous functions.

Lemma 2.19. Given any T-ideal I and any polynomial f ∈ I which is a non-
identity of A, we can obtain an A-quasi-homogeneous polynomial in I.

Proof. By Remark 2.18, taking s to be the degree of xi in some monomial, this
monomial cancels in

f(. . . , αai, . . . )− αsf(. . . , ai, . . . ),

so one concludes by induction. �

Definition 2.20. A specialization radically annihilates the polynomial f if the
number of radical substitutions is at least the nilpotence index of J .

In case a substitution radically annihilates f , each monomial of f must evaluate
to 0. One main idea here is that the nilpotence of the radical forces an evaluation
to be 0 when the specialization radically annihilates the polynomial f .

At the outset, for full quivers defined over a field, the semisimple part S is
the sum of the diagonal Wedderburn blocks of A, and J is the sum of the off-
diagonal Wedderburn blocks. However, after “gluing up to infinitesimals”, some of
the radical J might be transferred to the diagonal blocks. For example, when A is
a local algebra, there is a single block, which thus contains all of J .

Definition 2.21. A radical substitution is internal if it occurs in a diagonal block
(after “gluing up to infinitesimals”); otherwise it is external.

2.4.1. The Hamilton-Cayley equation applied to quasi-linear polynomials. One of
the key techniques used here (and throughout combinatorial PI-theory) is to absorb
characteristic coefficients into some (multilinear) alternating polynomial
f(x1, . . . , xt; y1, . . . , yt), as exemplified in [5, Theorem J, p. 25]. Since we must
cope with quasi-linear polynomials in this paper, we need to extend the theory to
quasi-linear polynomials. Accordingly, we need another definition.

Definition 2.22. A polynomial f(x1, . . . , xt; y1, . . . , yt) is (A; t; q̄)-quasi-
alternating if f is A-quasi-linear in x1, . . . , xt and quasi-homogeneous of de-
gree q̄, for which f becomes 0 whenever xi is substituted throughout for xj for
any 1 ≤ i < j ≤ t.

Fortunately, the task of working with quasi-linear polynomials over infinite fields
was already done in Kemer’s verification of [18, Equation (40)]; he uses the termi-
nology forms for our characteristic coefficients. If f is (A; t; q̄)-quasi-alternating,
then we still get Kemer’s conclusion. This can also be stated in the language of
[5, Theorem J, Equation 1.19, page 27] (with the same proof), as follows:

(3) αq̄
kf(a1, . . . , at, r1, . . . , rm) =

∑
f(T k1a1, . . . , T

ktat, r1, . . . , rm),

summed over all vectors (k1, . . . , kt) with each ki ∈ {0, 1} and k1+· · ·+kt = k, where
αk is the k-th characteristic coefficient of a linear transformation T :V → V, and f is
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(A; t; q̄)-quasi-alternating. Of course, when applying (3) in arbitrary characteristic,
we must consider all characteristic coefficients and not just the traces.

We want to determine a value of q̄ for which our polynomial f will be (A; t; q̄)-
quasi-alternating. When dealing with a representable affine algebra A, which has
a finite number of generators, we may assume that the base field F is finite, and
thus any element, viewed as a matrix in Mn(K), must have all of its characteristic
values in a field F̄ which is a field extension of F of some finite order q̄. The idea is
to take the characteristic polynomial of the matrix aq̄ instead of the characteristic
polynomial of the matrix a.

Remark 2.23. There is a delicate issue here, insofar as Amitsur’s proof of [5, The-
orem J] relies on T acting on a vector space V . If we take V = Mn(K), then its
dimension is n2, but we can bypass this difficulty by appealing to the upcoming
Lemma 2.24. (Note also that when n is a power of p, then n2 is still a power of p.
In view of Lemma 2.2, we can just replace q̄ by q̄2. Likewise, we could replace T
by any p-power of T .)

Lemma 2.24. Suppose C is an algebra containing the q̄-characteristic coefficients
of a matrix a ∈ Mn(C). Then a is integral over C.

Proof. By assumption aq̄ is integral over C, implying at once that a is integral over
C. �

Remark 2.25. For our applications of Shirshov’s Theorem we only need to adjoin
finitely many q̄-characteristic coefficients to a given affine C-algebra A to obtain an
algebra Â integral of bounded degree over the commutative algebra Ĉq̄ obtained by
adjoining the same q̄-characteristic coefficients to C.

Thus, when we are given a representation ρ :A → Mn(C), we stipulate that the

generators of Ĉq̄ include all q̄-characteristic coefficients of products of a given finite
set of generators of ρ(A) (viewed as a matrix in Mn(C)).

Definition 2.26. We call Ĉq̄ of Remark 2.25 the q̄-characteristic closure of C.

Lemma 2.27. Ĉq̄ is its own q̄-characteristic closure.

Proof. We appeal to a result of Amitsur [1, Theorem A]; this describes the char-
acteristic coefficients of a linear combination

∑
βiri of matrices in the subalgebra

generated by the characteristic coefficients of products of the ri. �

Remark 2.28. If f(y1, y2, . . . ) is A-quasi-linear in y1 and g(x1, x2, . . . ) is (A; t; q̄)-
quasi-alternating, then

f(g(x1, x2, . . . )y1, y2, . . . ), f(y1g(x1, x2, . . . ), y2, . . . )

are (A; t; q̄)-quasi-alternating.

Remark 2.29 ([5, Remark G, p. 25]). Let f(x1, . . . , xt+1; y) be any (A; t; q̄)-quasi-
alternating polynomial. Then the polynomial

(4)
t+1∑
i=1

(−1)if(x1, . . . , xi−1, xi+1, . . . , xt+1, xi; y)

is (t+ 1)-A-quasi-alternating.
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2.4.2. Zubrilin’s theory applied to quasi-linear polynomials. Even without the trick
of Remark 2.23, we could resort to a more polynomial-oriented approach devel-
oped by Zubrilin, expounded in [5], which generalizes [5, Theorem J, p. 25]. Since
Zubrilin’s theory as developed in [5] requires us to start with multilinear polyno-
mials and we must cope with quasi-linear polynomials in this paper, we need to
extend the theory to quasi-linear polynomials. The idea is to take the characteristic
polynomial of the matrix aq̄ instead of the characteristic polynomial of the matrix
a. Zubrilin’s theory can be considered to be the case q̄ = 1, and extends readily
to the general case. Unfortunately, the theory as developed in [5] requires many
computations, so here we only indicate where the proofs are modified in this more
general situation.

Recall [5, Definition 2.40] that if f(x1, . . . , xt; y) is multilinear in the variables
xi, then (δjf)(x1, . . . , xt; y; z) is the sum over all the possible substitutions of zxi

for xi in j out of the first n places. Explicitly, let f(x1, . . . , xn, 
y,
t) be multilinear
in the xi (and perhaps involving additional variables summarized as 
y and 
t). Take
0 ≤ k ≤ n, and expand

f∗ = f((z + 1)x1, . . . , (z + 1)xn, 
y,
t),

where z is a new variable. Then we write δ
(x,n)
k,z (f) := δ

(x,n)
k,z (f)(x1, . . . , xn, z) for

the homogeneous component of f∗ of degree k in the noncommutative variable z.

Proposition 2.30 ([5, Corollary 2.45], [30]). Let f(x1, . . . , xt, xt+1; y) be any
(A; t; q̄)-quasi-alternating polynomial which is linear in xt+1. Also suppose the poly-
nomial of (4) is an identity of A. Then A also satisfies the identity

(5)

n∑
j=0

(−1)jδ
(n)
j,z (f(x1, . . . , xn, z

n−jxn+1)) ≡ 0 modulo CAPn+1.

We will need to use Proposition 2.30 in the general case (Theorem 6.22), even
though Remark 2.23 suffices for the field-theoretic case.

3. Review of quivers of representations

Our main tool is the quiver of a representation, which we recall from [7] and [8].
(This differs from the customary definition of quiver, since it is not Morita invariant
but takes into account the matrix size.)

3.1. Full quivers and pseudo-quivers.

Remark 3.1. Any representable algebra A ⊆ Mn(K) has its Wedderburn block
form described in detail in [6] and [7, Definition 3.10], which is the keystone of
[7]. This Wedderburn block form induces an action of A on Mn(K), by which we
view each element a ∈ A as a linear operator �a on V = Kn via left multiplication.
(Likewise, we also have a right action via right multiplication.) In the sequel, we
usually consider the algebra A in this context.

For further reference, we also bring in the slightly more general notion of pseudo-
quiver, to enable linear changes of basis in the representation.

See [7] and [8] for details about full quivers and pseudo-quivers. It is useful
to formulate the definition purely geometrically, without reference to the original
algebra.
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Definition 3.2. An (abstract) full quiver (as well as (abstract) pseudo-
quiver) is a directed graph Γ, without double edges and without cycles, having
the following information attached to the vertices and edges:

(1) The vertices are ordered, say from 1 to k, and an edge can only take a
vertex to a vertex of higher order. There also are identifications of vertices
and of edges, called gluing. Gluing of vertices is of one of the following
types:

• Identical gluing, which identifies matrix entries in the corresponding
blocks;

• Frobenius gluing, which identifies matrix entries in one block with
their q-th power in another block, where q is a power of p;

• Gluing up to infinitesimals described in [8, Definition 2.3];
• (in the case of pseudo-quivers) Linear relations among the vertices;
cf. Remark 3.4 below.

Each vertex is labelled with a roman numeral (I, II etc.); glued vertices
are labelled with the same roman numeral.

The first vertex listed in a glued component of vertices is also given a
pair of subscripts (ni, ti): the matrix degree ni and the cardinality of
the corresponding field extension of F .

(2) Off-diagonal gluing (i.e., gluing among the edges) has several possible types,
including Frobenius gluing and proportional gluing with an accompa-
nying scaling factor. The absence of a scaling factor indicates scaling
factor 1; such a gluing is called an identical gluing when there is no
Frobenius twist indicated.

Frobenius gluing of a block with itself and gluing up to infinitesimals
can be viewed as modifying the base ring, yielding a commutative affine
algebra over a field instead of a field.

Very briefly, the quiver of a representation is obtained by taking the
Wedderburn block form of the image, associating vertices to the diagonal
blocks and arrows to the blocks above the diagonal. Gluing corresponds to
identification of matrix components in the algebra. The pseudo-quiver is
obtained when we make extra identifications of the vertices (which results
in extra gluing).

Remark 3.3. (i) Any representation of an algebra A into Wedderburn block form
gives rise to a full quiver. Starting with the k vertices v1, . . . , vk corresponding to
central idempotents of the blocks, we proceed as in Remark 3.1. We identify the
entries of the respective blocks according to gluing (with identical gluing identifying
entries and with Frobenius gluing corresponding to the Frobenius automorphism).
For any two idempotents ei, ej we choose a base of eiAej for the arrows between i
and j. Then by definition, any two consecutive vertices have only a single arrow
joining them, although now we must accept new gluing (corresponding to linear
dependence) of vertices.

(ii) Conversely, any abstract full quiver gives rise to a C-subalgebra A of Mn(K)
in Wedderburn block form, where we read off the diagonal blocks from the vertices
(together with the matrix size, base field, and gluing), and then write down the
off-diagonal parts from the arrows together with the relations that are registered
together with the quiver.
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Note that this observation does not require that C be a field. In this way, we
can define the algebra of a quiver over an arbitrary integral domain.

Remark 3.4. Any full quiver of a representation of an algebra A gives rise to a
pseudo-quiver. Starting with the k vertices v1, . . . , vk corresponding to central
idempotents of the blocks, we proceed as in Remark 3.1. We identify the entries of
the respective blocks according to gluing (with identical gluing identifying entries
and with Frobenius gluing corresponding to the Frobenius automorphism). For
any two idempotents ei, ej we choose a base of eiAej for the arrows between i
and j. Then by definition, any two consecutive vertices have only a single arrow
joining them, although now we must accept new gluing (corresponding to linear
dependence) of vertices.

3.2. Degree vectors.

Definition 3.5. The length of a path B in a pseudo-quiver is its number of
arrows, excluding loops, which equals its number of vertices minus 1. Thus, a
typical path has vertices r1, . . . , r�+1, where the vertex rj has matrix degree nj .
We call (n1, . . . , n�) the degree vector of the path B. We order the degree vectors
according to the largest nj which appears in the distinct glued components, counting
multiplicity. More precisely, for any degree vector we discard any duplications (due
to gluing), and then associate the number dk to the number of components of
matrix degree k. We order the degree vectors according to these sets of dk, taken
lexicographically.

For example, the degree vector (3, 1, 3, 3) with no gluing of vertices is greater
than (3, 2, 2, 3, 2, 3, 3) with the fourth, sixth, and seventh vertices glued since 3
appears three times unglued in the first degree vector but only twice in the second
degree vector.

Remark 3.6. We also define a secondary order on B with respect to the grade
defined above, because further gluing will lower the number of elements in the
grading monoid.

3.2.1. Degenerate gluing between branches.
Degenerate gluing is the situation in which each edge of one branch is glued

to the corresponding edge of another branch; then the two branches produce the
same values when we multiply out the elements in the corresponding algebra. We
can eliminate degenerate gluing by passing to the pseudo-quiver, but it is often
more convenient for us to make use of [8, Proposition 3.13]:

Proposition 3.7. Any representable, relatively free algebra has a representation
whose full quiver has no degenerate gluing.

Since we are working with T-ideals, which correspond to relatively free algebras,
this result enables us to bypass pseudo-quivers.

As shown in [8, Lemma 2.8], the gluing of two vertices of a pseudo-quiver can
often be eliminated simply by joining the vertices (since the arrows now are linear
operators). We call this process reducing the pseudo-quiver, and we always assume
in the sequel that our pseudo-quivers are reduced.

Conversely, given a quiver or pseudo-quiver Γ, one can take an arbitrary com-
mutative Noetherian algebra K and build a representable algebra A into Mn(K)
from Γ. One theme of [8] is how the geometric properties of Γ yield identities and
nonidentities of A.
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Linear relations among the vertices of a pseudo-quiver can only occur if all
paths between these vertices have the same “grade”, as described in [8, §2.7]. This
becomes somewhat intricate in characteristic p, in the presence of Frobenius gluing,
so we review the idea here. Later on, we will need an inductive procedure which
applies to when the gluing is strengthened. In principle, this is obvious, because any
further gluing which does not lower the degree vector must lower the power of q used
in the Frobenius twist, and so this must terminate after a finite number of steps.
To state this formally requires some technical details, which we review from [8].

Take A to be the Zariski closure of a representable relatively free algebra, having
full quiver Γ. We write M∞ for the multiplicative monoid

{
1, q, q2, . . . , ε

}
, where

εa = ε for every a ∈ Mm. (In other words, ε is the “zero” element adjoined to the
multiplicative monoid 〈q〉.) When the base field F is infinite, the full quiver can
be separated (replacing α by αγ where γq �= γ), and the algebra can be embedded
in a graded algebra. In other words, each diagonal block is M∞-graded, where the
indeterminates λi are given degree 1; hence, A is naturally M-graded.

When F is a finite field of order q, Mm denotes the monoid obtained by adjoining
a “zero” element ε to the subgroup 〈q〉 of the Euler group U(Zqm−1), namely Mm ={
1, q, q2, . . . , qm−1, ε

}
where εa = ε for every a ∈ Mm. Let M be the semigroup

M/∼, where ∼ is the equivalence relation obtained by matching the degrees of
glued variables: When two vertices have Frobenius gluing α→φi(α), we identify 1
with qi in their respective components.

By [8, Lemma 2.7], every Mm is a quotient of M∞, and more generally when-
ever m|m′, the natural group projection Zqm′−1 → Zqm−1 extends to a monoid
homomorphism Mm′ → Mm.

The diagonal blocks Sr of A (under multiplication) can be viewed as Mtr -

modules, where we define the product [qi]a to be aq
i

, and [ε]a = 0. Sr itself is
not graded, and we need to pass to the larger algebra B arising from the sub-Peirce
decomposition of A; cf. [8, Remark 2.33].

Let Ar,r′ denote the (r, r
′)-sub-Peirce component of A. Then Ar,r′ is naturally a

left Fr-module and right Fr′-module, so Ar,r′ is graded by the monoid Mr̂ obtained
from Fr̂, the compositum of Fr and Fr′ . (In other words, if Fr has qt elements and

Fr′ has qt
′
elements, then Fr̂ has qt̂ elements, where t̂ = lcm(t, t′).) Since the free

module is graded and the monoid Mr̂ is invariant under the Frobenius relations,
we see that the Frobenius relations preserve the grade under Mr̂.

3.3. Canonization theorems.

Definition 3.8. A full quiver (resp. pseudo-quiver) is basic if it has a unique initial
vertex r and unique terminal vertex s. A basic full quiver (resp. pseudo-quiver) Γ
is canonical if it has vertices r′ and s′ satisfying the following properties:

• Γ starts with a unique path p0 from r to r′. Thus, every vertex not on p0
succeeds r′.

• Γ ends with a unique path p′0 from s′ to s. Thus, every vertex not on p′0
precedes s′.

• Any two paths from the vertex r′ to the vertex s′ have the same grade.

An enhanced canonical full quiver (resp. pseudo-quiver) is a canonical
full quiver (resp. pseudo-quiver) with uniform grade.
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We recall the following “canonization theorems”:

• [7, Theorem 6.12]. Any relatively free affine PI-algebra A has a represen-
tation for whose full quiver all gluing is Frobenius proportional.

• [8, Theorem 3.5]. Any basic full quiver (resp. pseudo-quiver) of a relatively
free algebra can be modified (via a change of base) to an enhanced canonical
full quiver (resp. pseudo-quiver).

• [8, Corollary 3.6]. Any relatively free algebra is a subdirect product of
algebras with representations whose full quivers (resp. pseudo-quivers) are
enhanced canonical.

• [8, Theorem 3.12]. For any C-closed T-ideal of a relatively free algebra A,
the full quiver of A′ = A/I is obtained by means of the following elementary
operations on the full quiver of A: Gluing, new linear dependences on the
vertices, and new relations on the base ring.

Thus, the PI-theory can be reduced to the case of enhanced canonical full quivers.
Accordingly, all of the full quivers and pseudo-quivers that we consider in this paper
will be enhanced canonical.

4. Evaluations of polynomials arising from algebras of full quivers

We get to the crucial point of this paper, which is how to evaluate a polynomial
f(x1, x2, . . . ) on a representable algebra A, in terms of the full quiver Γ of A. This
question is quite difficult in general, but we note that the quasi-linearization of f (as
defined above) is in the T-ideal generated by f , so we may assume that f is quasi-
linear. Thus, by Remark 2.16, the evaluations of a quasi-linear polynomial f(x) are
spanned by the evaluations obtained by pure specializations of the indeterminates
xi to S ∪ J .

The reader should already note that all of the proofs of this section are algorith-
mic, involving only a finite number of steps. This observation will be needed below
in the reduction of the base ring from an integral domain to a field, in the second
proof of Theorem 6.22.

Remark 4.1. Any nonzero evaluation arises from a string of substitutions xi �→ xi

to elements corresponding to some path of the full quiver Γ. (We are permitted to
have substitutions repeating in the same matrix block, i.e., the vertex repeats via a
loop.) The xi connect two vertices, say of matrix degree ni and n′

i. Suppose t is the
nilpotence index of the radical J . Then any string involving t radical substitutions
is 0. If we replace xi by hni

xi,1 · · ·xi,thni
xi, then we still get the same evaluation

when xi,1, · · · , xi,t are specialized to the identity matrices in ni×ni matrix blocks,
which in particular are semisimple substitutions. Note that the hni

were inserted
in order to locate the semisimple substitutions of the xi,1 inside matrix blocks of
size at least ni × ni.

On the other hand, the number of radical substitutions must be at most the
nilpotence index of A, so at least one of these extra substitutions must be semisim-
ple, if we are still to have a nonzero evaluation. By taking hni

xq̄
i,1xi,2 · · ·xi,thni

xi

(q̄ as in Remark 2.6), we force this radical substitution to come from xi,1
q̄.

Thus, this process eventually will yield a polynomial having a nonzero specializa-
tion corresponding to a path whose degree vector involves a semisimple substitution
at each matrix block.
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4.1. Characteristic coefficient-absorbing polynomials inside T-ideals. The
main goal of [8] was to show that any relatively free representable algebra A has

a T-ideal in common with a Noetherian algebra Ã which is a finite module over a
commutative affine algebra when A is affine. This T-ideal yields a nonidentity of
a branch of A. The method was to define some action of characteristic coefficients
(i.e., coefficients of the characteristic polynomial) of elements of a Zariski-closed
algebra A, such that the values of the nonidentity obtained from its full quiver
are closed under multiplication by these characteristic coefficients. This enabled us
to preserve Hamilton-Cayley type properties in the evaluations of diagonal blocks.
Here we use the same techniques, but need to refine them in order to obtain the
desired polynomial within a given T-ideal obtained from an arbitrary polynomial
(not necessarily arising from a branch).

Because we are working with quasi-linear polynomials instead of multilinear poly-
nomials, we must utilize only q̄-characteristic coefficients instead of all characteristic
coefficients. Let us recall (see for example, [8, Lemma 5.1]):

Lemma 4.2. Suppose A is a representable algebra over a field of characteristic p.
When, for some m, q̄ = pm > n (which is greater than the nilpotence index of the
Jacobson radical), then the element aq̄ is semisimple for every a ∈ A.

This was enough to reduce various problems in [8] and [9] to the characteristic
0 case, effectively replacing q̄ by 1, but does not suffice here to reduce Specht’s
problem to the characteristic 0 case. Nevertheless, it is still a key element of the
proof when we keep track of q̄.

Again, our objective is to apply the celebrated theorem of Shirshov [5, Chapter
2] to adjoin q̄-characteristic coefficients to A and obtain an algebra finite as a
module over a commutative affine F -algebra. For technical reasons, we only succeed
in adjoining q̄-powers of characteristic coefficients, so we formulate the following
definition, modified from [8]:

Definition 4.3. Given a quasi-linear polynomial f(x; y) in indeterminates labelled
xi, yi, we say f is q̄-characteristic coefficient-absorbing with respect to a full
quiver Γ = Γ(A) if the following properties hold:

(1) f specializes to 0 under any substitution in which at least one of the xi is
specialized to a radical element of A. (In other words, the only nonzero
values of f are obtained when all substitutions of the xi are semisimple.)

(2) f(A(Γ))+ absorbs multiplication by any q̄-characteristic coefficient of any
element in a simple (diagonal) matrix block of A(Γ).

There are two ways of obtaining intrinsically the coefficients of the characteristic
polynomial

fa = λn +
n−1∑
k=1

(−1)kαj(a)λ
n−k

of a matrix a. Fixing k, we write α for αk. (For example, if k = 1, then α(a) =
tr(a).)

Recall from [8, Definition 2.23] that we defined

(6) trmat(a) =
n∑

i,j=1

eijaeji,

called the matrix definition of trace. We need a generalization.
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Definition 4.4. In any matrix ring Mn(W ), we define

(7) αmat(a) :=
n∑

j=1

∑
ej,i1aei2,i2a · · · aeikikaei1,j ,

the inner sum taken over all vectors (i1, . . . , ik) of length k.

Of course, these characteristic coefficients αmat(a) commute iff W is a commu-
tative ring. This is a key issue that we will need to address.

Lemma 4.5. For any Mn(F )-quasi-linear polynomial f(x1, x2, . . . ) which is also
Mn(F )-quasi-homogeneous of degree q̄ in x1, the polynomial

f̂ = f(cn2(y)x1cn2(z), x2, . . . )

is q̄-characteristic coefficient absorbing in x1.

Proof. We use the same proof as in [5, Theorem J, Equation 1.19, page 27], when
the assertion is formulated as

(8) αq̄
kf(a1, . . . , at, r1, . . . , rm) =

∑
f(T k1a1, . . . , T

ktat, r1, . . . , rm),

summed over all vectors (k1, . . . , kt) with each ki ∈ {0, 1} and k1 + · · · + kt = k,
where αk is the k-th characteristic coefficient of a linear transformation T :V → V,
and f is (A; t; q̄)-quasi-alternating. �

Remark 4.6. With notation as in (8), the Cayley-Hamilton identity for ni × ni

matrices which are evaluations of f is

0 =

ni∑
k=0

αq̄
kf(a1, . . . , at, r1, . . . , rm) =

∑
k1,...,kt

f(T k1a1, . . . , T
ktat, r1, . . . , rm),

which is thus an identity in the T-ideal generated by f .

Note that this is the same argument as used by Zubrilin in the proof of Propo-
sition 2.30.

Iteration yields:

Proposition 4.7. For any polynomial f(x1, x2, . . . ) quasi-linear in x1 with respect

to a matrix algebra Mn(F ), there is a polynomial f̂ in the T-ideal generated by f
which is q̄-characteristic coefficient absorbing.

Definition 4.8. Fixing 0 ≤ k < n, we denote the k-th q̄-characteristic coefficient
of a, defined implicitly in Lemma 4.5, as αq̄

pol(a). (Strictly speaking, k should be
included in the notation, but since k is taken arbitrarily in our results, we do not
bother to specify it.)

Definition 4.9. We call the identity
∑

k1,...,kt
f(T k1x1, . . . , T

ktxt, r1, . . . , rm), ob-
tained in Remark 4.6, the Hamilton-Cayley identity induced by f .

The following result holds for arbitrary algebras of paths.

Remark 4.10. We need an action of matrix characteristic coefficients (computed on
the diagonal components of the given representation of A) on the T-ideal of f . To
do this, one computes the characteristic coefficient as in Definition 4.4, and applies
this on each (glued) matrix component, i.e., the Peirce component corresponding
to vertices on each side of an arrow. More precisely, suppose we have two Peirce
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components, whose idempotents are er =
∑

k er,k and es =
∑

� es,�. For any arrow
α from (nonglued) vertices ri to s�, we consider the matrix (auv) corresponding to
α, and take characteristic coefficients on the rk-diagonal component on the left, and
the s�-diagonal component on the right. In other words, if the vertex corresponding
to r has matrix degree ni, taking an ni ×ni matrix w, we define αq̄

polu
(w) as in the

action of Lemma 4.5 and then the left action

(9) au,v �→ αq̄
polu

(w)au,v.

Likewise, for an nj × nj matrix w we define the right action

(10) au,v �→ au,vα
q̄
polv

(w).

(However, we only need the action when the vertex is nonempty; we forego the
action for empty vertices.)

We can proceed further whenever these two q̄-characteristic coefficient actions
coincide on the T-ideal of f .

Lemma 4.11. αmat(a)
q̄ = αq̄

pol(a) in Mn(C) for C commutative.

Thus, left multiplication by αmat(a) acts on the set of evaluations of any n2
i -

alternating polynomial f(x; y) on an ni × ni matrix component.

Proof. Follows at once from Equation (8). �

4.2. Identification of matrix actions for unmixed substitutions. Our main
objective is to introduce q̄-characteristic coefficient-absorbing polynomials corre-
sponding to all canonical full quivers, in order to identify these two notions of
q̄-characteristic coefficients, working with matrix substitutions inside a given poly-
nomial. We have the natural bimodule action of q̄-characteristic coefficients on A
given in terms of the full quiver, which we can identify with αq̄

pol(a), defined in

Equation (8), whenever the matrix characteristic coefficients commute. The theory
subdivides into two cases:

• The substitution of an indeterminate to sums of elements in the same glued
Wedderburn component.

• The substitution of an indeterminate to sums of elements in the different
glued Wedderburn components.

The techniques are different. We start with the first sort of situation, which we call
“unmixed”, which can be treated via the argument of Lemma 4.11. For the second
sort of situation, which we call “mixed”, Lemma 2.17 is applicable, but requires
an intricate “hiking procedure” (defined presently) on the quasi-linearization of a
polynomial.

Remark 4.12. The argument of Lemma 4.11 holds for a single diagonal matrix
component over a commutative ring.

Recall that the T-space of a polynomial f on an F -algebra A is defined as the
F -subspace of A spanned by the evaluations of f on A. Ironically, the sophisticated
hiking procedure fails to handle the unmixed case since it relies on a T-space ar-
gument which thus must fail in view of Shchigolev’s counterexample for ACC for
T-spaces [26]. So the theory actually requires separate treatment of the “degen-
erate” unmixed case. The proof of Remark 4.12 involves the full force of T-ideals
rather than T-spaces.
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4.3. Hiking. We arrive at the main new idea of this paper. Let A be a Zariski
closed algebra, and let f be a quasi-linear nonidentity. The goal is to replace f
by a better structured nonidentity in its T-ideal, for which the q̄-characteristic
coefficients of the matrix blocks defined in components of the full quiver commute
with each other and also with radical substitutions of arrows connecting glued
vertices. This enables us to compute these q̄-characteristic coefficients in terms of
polynomial evaluations. We must cope with the possibility that our semisimple
substitution has been sent to the ‘wrong’ component, either because its matrix
degree is too large or the base field is of the wrong size.

We write [a, b] for the additive commutator ab−ba, and [a, b]q for the Frobenius
commutator ab− bqa.

Lemma 4.13. If f(x1, . . . , xn) is any polynomial quasi-linear in xi, then

(11) f(a1, . . . , [a, ai], . . . , an) = f(a1, . . . , aai, . . . , an)− f(a1, . . . , aia, . . . , an),

and, more generally,

(12) f(a1, . . . , [a, ai1 · · · aik ], . . . , an) =
k∑

j=1

f(a1, . . . , ai1 · · · [a, aij ] · · · aik , . . . , an)

for all substitutions in A.

Proof. By quasi-linearity, we may assume that f is a monomial, in which case we
see that all of the intermediate terms cancel. �

We recall the hiking procedure of [8, Lemma 5.8], but the hiking procedure here
is quite subtle, and requires four different stages.

4.3.1. Stage 1 hiking.

Lemma 4.14. Suppose a quasi-linear nonidentity f of a Zariski closed algebra A
has a nonzero value for some semisimple substitution of some xi in A, corresponding
to an arrow in the full quiver whose initial vertex is labelled by (ni, ti) and whose
terminal vertex is labelled by (n′

i, t
′
i). Replacing xi by [xi, hni

] (where the hni
involve

new indeterminates) yields a quasi-linear polynomial

(13) f(. . . , [xi, hni
], . . . )

in which any substitution of xi into this diagonal block yields 0.

Proof. The evaluations of hni
in the semisimple part are central; hence, any nonzero

value in f(. . . , [xi, hni
], . . . ) forces us into a radical substitution. �

Lemma 4.15. For f as in Lemma 4.14,

(14) ∇if := f(. . . , [xi, hmax{ni,ni′}], . . . )

also does not vanish on A. In the case of Frobenius gluing x �→ xq� , we need to take
instead the substitution

xi → f(. . . , [xi, hmax{ni,ni′}]q� , . . . ).

Proof. There are substitutions in the appropriate diagonal block (the one whose
degree is max{ni, ni′}) for which hmax{ni,ni′} is a nonzero scalar, and we specialize
xi to an element which passes from one block to the other. �
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Corollary 4.16. Any nonidentity can be hiked via successive stage 1 hiking to
ensure semisimple substitutions in each matrix component.

Proof. Once we have a nonzero substitution of f with external radical substitutions
in all the hiked positions, we may continue to hike as much as we want without
affecting the fact that we have a nonzero substitution, i.e., that f is a nonidentity.

�
Example 4.17. Stage 1 hiking is illustrated via the full quiver given for the Grass-
mann algebra on two generators:

(15) I
α ��

β

��

I

−β

��

I
α �� I

Clearly the critical nonidentity for each branch is [x1, x2], and we get the Grassmann
identity [[x1, x2], x3] by taking f = x1 and hiking.

We call this procedure (application of (14)) stage 1 hiking, since we also need
other forms of hiking which we call stage 2, stage 3 and stage 4 hiking, to be
described below.

Remark 4.18. Stage 1 hiking absorbs all internal radical substitutions (cf. Defini-
tion 2.21) because of the use of the central polynomial hmax{ni,ni′}, so when working
with fully hiked polynomials, we need consider only the Peirce decomposition (and
not the more complicated sub-Peirce decomposition; see [6]). In this manner, stage
1 hiking leads us to external radical substitutions for xi, say from a block of degree
ni to a block of degree ni+1.

Explicitly, after stage 1 hiking, we have obtained expressions of the form

(16) gi(x, y, z) = zi,1[hmax{ni,ni′}(xi,1, xi,2, . . . ), yi]zi,2.

To simplify notation, we assume ni+1 = n′
i. Now we define

(17) f̃ = f(hn1
, g1, hn2

, g2, · · · , g�, hn�+1),

where different indeterminates are used in each polynomial, in which we get the
term

(18) hn1
g1hn2

g2 · · · g�hn�+1.

Since the radical of a Zariski closed algebra A is nilpotent, we can perform stage 1
hiking on f only at a finite number of different positions (bounded by the nilpotence
index of A) before getting an identity. Stopping before the last such hike gives us
a nonidentity which would become an identity after any further hike of stage 1.

Unfortunately, our polynomial f has several different monomials, and when we
hike with respect to one of these monomials, some other monomial will give us
some permutation of (18), in which the substitutions might go into the “wrong
component”. The difficulty that we will encounter is that any matrix component
can be embedded naturally into a larger matrix component, so a given matrix
substitution could be viewed as being in this larger component, thereby ruining
our attempts to compute with polynomials on each individual matrix component.
Indeed, even a radical substitution could be replaced by a semisimple substitution
in a larger component.
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4.3.2. Stage 2 hiking. In view of the previous paragraph, we also need a second
stage of hiking, to take care of substitutions into the “wrong” component.

Given a nonzero specialization of a monomial of f under the substitutions xi �→
xi, i ≥ 1, where xi ∈ Mni

(K), consider the specialization of another (permuted)
monomial of f under the substitutions xi �→ xi

′, i ≥ 1, where xi
′ ∈ Mnj

(K) (and
perhaps j �= i).

Example 4.19. Consider the algebra⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
α ∗ ∗ ∗
0 β ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟⎟⎠ : α, β ∈ F

⎫⎪⎪⎬
⎪⎪⎭,

where ∗ denotes an arbitrary element in K. The corresponding full quiver I(1,1) →
II(1,1) → III2 would normally give us the polynomial

z1,1[x1,1, y1]z1,2z2,1[h2(x2,1, . . . ), y2]z3,1,

which could be condensed to [x1,1, y1]z[h2(x2,1, . . . ), y2] since various indeterminates
can be specialized to 1. But if f(x1, x2, x3, . . . ) has both monomials x1x2x3 · · · and
x3x2x1 . . . , then hiking in the second monomial yields the permuted term

[h2(x2,1, . . . ), y2]z[x1,1, y1]

which permits a nonzero evaluation with all substitutions in the lower 2× 2 matrix
component, and we cannot get a proper hold on the substitutions.

We need to hike f further, to guarantee that the specialization of some unin-
tended monomial of f in (17) does not land in a subsequent matrix component
Mnj

(K) for nj > ni; our next stage of hiking eliminates all such specializations.

Lemma 4.20. Let H denote the central polynomial hq̄
nj

of Mnj
(K), and take

zi,1[hni
(xi,1, xi,2, . . . ), yi]zi,2gi+1 · · · gj−1H

q1

− zi,1H
q2 [hni

(xi,1, xi,2, . . . ), yi]zi,2gi+1 · · · gj−1

(for each pair (q1, q2) that occurs in Frobenius twists in the branch; in characteristic
0 we would just take q1 = q2 = 1). The product of these terms, taken over all the
q1 and q2, becomes nonzero iff the substitution is to the i component (of matrix size
ni).

Proof. Specializing this expression into the j-component (of size nj) would yield
two equal terms which cancel, since H takes on scalar values, and thus yield 0. But
specializing into the i component (of size ni) would yield one term nonzero and
the other 0 since H is an identity on ni × ni matrices, so their difference would be
nonzero. �

In this way, we eliminate the “wrong” specializations in other monomials of
f while preserving the “correct” ones. The modification of f according to this
specialization is called stage 2 hiking of the polynomial f .
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4.3.3. Stage 3 hiking. So far we have guaranteed the specializations to be in the
matrix components of the correct size, but we need to fine tune them still further
because the centers of the components may be of different sizes. Next, we will want
to reduce to the case where for any two branches, the base field for each vertex has
the same order. Suppose B′ is another branch with the same degree vector. If the
corresponding base fields for the i-th vertex of B and B′ are ni and n′

i respectively,

we take ti = qn
′
i and replace xi by (hti

ni
− hni

)xi. The modification of f according
to this specialization is called stage 3 hiking of the polynomial f .

4.3.4. Stage 4 hiking. Some of the radical substitutions are internal in the sense
that they occur in a diagonal block (after “gluing up to infinitesimals”). Hiking
absorbs all internal radical substitutions, because of the use of the central poly-
nomial hni

, so when working with fully hiked polynomials, we need consider only
the Peirce decomposition (and not the more complicated sub-Peirce decomposition;
cf. [6]).

Lemma 4.21. There is a substitution to hike f further such that

(19) c̃n2
i
(y)xicn′

i
2(y)c̃n2

i
(αky)xicn′

i
2(αky)

− c̃n2
i
(αky)xicn′

i
2(αky)

c̃n2
i
(y)xicn′

i
2(y)

vanishes under any specialization to the ni, n
′
i blocks.

Proof. By Proposition 4.7 there is a Capelli polynomial c̃n2
i
and p-power q̄ such

that

(20) c̃n2
i
(αky)xicn′

i
2(y) = αq̄

k(y1)cn2
i
(y)xicn′

i
2(y)

on the diagonal blocks.
Since q̄-characteristic coefficients commute on any diagonal block, we see from

this that

(21) c̃n2
i
(y)xicn′

i
2(y)c̃n2

i
(αky)xicn′

i
2(αky)

− c̃n2
i
(αky)xicn′

i
2(αky)

c̃n2
i
(y)xicn′

i
2(y)

vanishes identically on any diagonal block, where z = αky.
One concludes from this that substituting (21) for xi would hike our polynomial

one step further. But there are only finitely many ways of performing this hiking
procedure. Thus, after a finite number of hikes, we arrive at a polynomial in which
we have complete control of the substitutions and the q̄-characteristic coefficients
commute. �

4.4. Admissible polynomials. Although hiking is the key tool in this analysis,
one must note that the only time that the hiking procedure makes the two actions
of Remark 4.10 coincide is when it is applied to the components of maximal matrix
degree. In other words, the polynomial f is required to have a nonzero evaluation
on a vector of maximal matrix degree. Thus we must consider the following sort of
polynomial.

Definition 4.22. A polynomial f is A-admissible on a Zariski-closed algebra A
if f takes on some nonzero evaluation on a vector of maximal matrix degree. We
denote such a vector as vB, where B is the branch of the full quiver which gives rise
to vB, and call vB the matrix vector of f .

If all of the substitutions of an indeterminate are to glued edges of the full quiver,
connecting vertices corresponding to the same matrix degree n1, then the notion
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of admissibility is irrelevant, since one could just replace f by cn2
1
f and obtain the

desired action on the matrix component from Equation (8).
But there is a subtle difficulty. Without gluing, we could proceed directly via

Remark 4.10. But gluing between branches leads to complications in applying
Remark 4.10. For example, one could have two strings I → II → III and I →
III → II, whereby the substitutions in f go to incompatible components. The
following definition, inspired by Drensky [12], enables us to bypass this difficulty in
the proof of the next theorem.

Definition 4.23. Given matrices a1, . . . , ak, the symmetrized (t; j) characteristic
coefficient is the j-elementary symmetric function applied to the t-characteristic
coefficients of a1, . . . , ak.

For example, taking t = 1, the symmetrized (1, j)-characteristic coefficients αt

are
k∑

j=1

trace(aj),
∑
j1>j2

trace(aj1) trace(aj2), . . . ,

k∏
j=1

trace(aj).

Theorem 4.24. Suppose f is an A-admissible nonidentity of a representable, rela-
tively free algebra A. Then the T-ideal I generated by f contains a q̄-characteristic
coefficient-absorbing A-admissible nonidentity f̃ .

Furthermore, the T-ideal IB of all fully hiked A-admissible polynomial obtained
from the degree vector vB is comprised of evaluations of q̄-characteristic coefficient-
absorbing polynomials, comprised of sums of evaluations on pure specializations
in B.

Proof. Let Γ be the full quiver of A. We follow the proof of [8, Theorem 5.8],
where we follow the process of building the polynomial Φ of [8, Definition 4.11],
but we must be more careful. Whereas in [8, Theorem 5.12] we were looking for
any trace-absorbing nonidentity and thus could hike the polynomial of an arbitrary
maximal path of a pseudo-quiver, now we need to work within the polynomial f
belonging to a given T-ideal and thus work simultaneously with all maximal paths
of the pseudo-quiver of the corresponding relatively free algebra.

Our polynomial f need not be multilinear, although we can make it A-quasi-
linear with respect to A. Since the other polynomials we insert are multilinear, f̃
remains A-quasi-linear. But f need not even be A-quasi-homogeneous, so multiply-
ing some variable by a q̄-characteristic coefficient might throw f out of the T-ideal I.

If the base field F were infinite, we could apply Lemma 2.19 to replace f by
an A-quasi-homogeneous polynomial, but in general this cannot be done so easily.
Accordingly, we adopt the following strategy in characteristic p:

We say that two strings in A := A(Γ) are compatible if their degree vectors
are the same. (This means that the matrix sizes of their semisimple substitutions
match.) Our overall goal is to modify f so that all nonzero substitutions in f are
compatible, and also to match the Frobenius twists, thereby enabling us to define
characteristic coefficient-absorption.

• We work with symmetrized q̄-characteristic coefficients instead of traces.
(The reason is given before Definition 4.23; we take q̄-powers to make sure
that we are working with semisimple matrices.)

• We pass to q̄ powers of transformations for a suitable power q̄ of p.
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• We pick a particular branch B of A on which we can place the substitutions
of a nonzero evaluation of f , and modify f̃ so that all branches that do
not have the same degree vector vB as that of B (cf. Definition 3.5) become
incompatible.

• We make branches incompatible to B when they do not have the same size
base fields as B for the corresponding vertices.

• We eliminate all Frobenius twists which do match those of B.
The hiking procedure only involves a finite number of polynomials, and is im-

plemented in the following technical lemma:

Lemma 4.25 (Compatibility Lemma). For any A-admissible nonidentity f of a
representable Zariski-closed algebra A, the T-ideal I generated by the polynomial
f contains a symmetrized q̄-characteristic coefficient-absorbing polynomial f̄ , not
an identity of A, in which all substitutions providing nonzero evaluations of f are
compatible.

Proof. If all the vertices of the full quiver Γ of A are glued, we are done by Re-
mark 4.12. Thus, we assume that Γ has nonglued vertices, and thus has strings
with degree vectors of length > 1.

Since applying the hiking procedure of Lemma 4.21 does not change the hypothe-
ses, we may assume that f̃ is fully hiked. We choose q̄ according to Lemma 4.2.

We consider all substitutions xi �→ xi to semisimple and radical elements. Of all
substitutions which do not annihilate f , some monomial of f then specializes to a
nonzero evaluation, i.e., a path in the full quiver, and we choose such a substitution
whose path P has maximal degree vector, and, after modifying f along the lines
of Remark 4.1, we may assume that the largest component ni of the degree vector
involves some semisimple substitution which, with slight abuse of notation, we
denote as xi. We want to make any other substitution xi �→ x′

i compatible with our
given substitution.

Suppose first that xi is a substitution connecting vertices of matrix degree ni,1

and ni,2. In particular, since any two consecutive arrows have a common vertex,
ni,1 = xi must be an external radical substitution; if xi is a semisimple substitution
or an internal radical substitution, then ni,1 = ni,2.

Take any substitution x′
i, connecting vertices of degree n′

i,1 and n′
i,2. Replacing

xi by hni
xihni

would annihilate any substitution to a component of smaller matrix
degree, so we may assume that n′

i,1 ≥ ni,1 and n′
i,2 ≥ ni,2.

Take i such that ni is maximal. Since the path P is assumed to have maximal
degree vector, we must have n′

i,1 = ni = n′
i,2. Furthermore, replacing xi by xq̄

i forces

the semisimple substitution x′
i

q̄
.

We will force all our new substitutions x′
j to be compatible with the original

ones along P, by working around this vertex.
Inductively (working backwards), we assume that n′

k = nk for all j < k ≤ i. We
already know that n′

j ≥ nj , but want to force n′
j = nj . It is enough to check this

for any external radical substitution xj , since these fix the degree vectors.
If xj

′ is also an external radical substitution, then n′
j = nj by maximality of the

degree vector, so we are done unless xj
′ is in the diagonal matrix block of degree

nk × nk; in other words, n′
j = nk, whereas nj < nk.

Now we apply stage 2 hiking (as described in Lemma 4.20), which preserves the
compatible substitutions and annihilates the incompatible substitutions.
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Thus, we only need concern ourselves with substitutions xj into the same matrix
component along the diagonal.

Since f is presumed to be fully hiked, for any internal radical substitution xj ,
we may assume that xj

′ also is an internal radical substitution; otherwise further
hiking will not affect an evaluation along P but will make the other evaluation 0.

As noted above, when xj is a semisimple substitution, taking xq̄
j forces the

semisimple substitution x′
j

q̄
.

In conclusion, by modifying f we have forced all the substitutions x′ to be
compatible with the original substitutions x.

Next, we want to reduce to the case where for any two branches, the base field
for each vertex has the same order. Suppose B′ is another branch with the same
degree vector, but with a base field of different order. Stage 3 hiking will zero out
all substitutions of xi in B′, and thus make B′ incompatible.

Since by definition any further hike of f̃ yields an identity, Lemma 4.21 dictates
that polynomial q̄-characteristic coefficients defined in terms of f via Equation
(8) must commute. There is a subtlety involved when the sub-Peirce component
involves consecutively glued vertices, since then we need the radical substitution b
of an arrow connecting glued vertices to commute with αq̄

pol(a). But this is because
taking any commutator hikes the polynomial further and thus is 0.

Now, as before, Lemma 4.21 dictates that polynomial q̄-characteristic coefficients
defined in terms of f via Equation (8) must commute, and thus the symmetrized
q̄-characteristic coefficients commute, and applying Lemma 4.13 shows that they
commute with any radical substitutions of arrows connecting glued vertices. Thus,
the polynomial action on I coincides with the well-defined matrix action as de-
scribed in Remark 4.10.

We still might encounter two different branches with the same degree vector but
with “crossover gluing”, i.e., I → II → III together with III → II → I. Applying
the same polynomial f to these two different branches might produce different
results. To sidestep this difficulty, assuming there are k such glued branches, we
consider all possible matrices a1, . . . , ak appearing in the corresponding position of
these k branches, and take the elementary symmetric functions σ1, . . . , σk on their q̄-
characteristic coefficients; in other words, we take the symmetrized q̄-characteristic
coefficients, as defined above. Now the polynomial action clearly is the same on
the σj , and thus on all symmetric functions on the characteristic coefficients of
a1, . . . , ak.

Since the nonidentities all contain an n2
i -alternating polynomial at the compo-

nent of matrix degree ni for each i, and we apply the q̄-characteristic coefficient
action simultaneously to each of these polynomials, their T-spaces are closed under
multiplication by q̄-characteristic coefficients of the simple components of semisim-
ple substitutions, so we have a q̄-characteristic coefficient-absorbing polynomial. �

Note that to apply the lemma we have to take Frobenius gluing into account.
When substituting into blocks with Frobenius gluing, we get characteristic coeffi-
cents with different Frobenius twists, and then we do the symmetrization.

The lemma yields the proof of the first assertion of Theorem 4.24, since we have
obtained the desired q̄-characteristic coefficient-absorbing A-admissible nonidentity.

For the last assertion of the theorem, we note that the q̄-characteristic coefficient-
absorbing properties of the lemma were proved by means only of the properties of
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the degree vector vB and not on the specific polynomial f̃ , and f̃ vanishes for all pure
substitutions to branches other than B. But xf̃ also is q̄-characteristic coefficient-
absorbing with respect to the same degree vector, and likewise the q̄-characteristic
coefficient-absorbing properties pass to sums and homomorphic images. �

We have completed the first step in our program:

Theorem 4.26 (q̄-Characteristic Value Adjunction Theorem). Let Â be the algebra
obtained by adjoining to A the matrix symmetrized q̄-characteristic coefficients of
products of the sub-Peirce components of the generic generators of A (of length up to

the bound of Shirshov’s Theorem [5, Chapter 2]), and let Ĉ be the algebra obtained by
adjoining to F these symmetrized q̄-characteristic coefficients. For any nonidentity
f of a representable relatively free affine algebra A, the T-ideal I generated by the
polynomial f contains a nonzero T-ideal which is also an ideal of the algebra Â.

Also, Â is a finite module over Ĉ, and in particular is Noetherian.

Proof. We follow the proof of [8, Theorem 5.16]. First we apply the partial lin-
earization procedure to make f A-quasi-linear. In view of [6, Theorem 7.20 and
Corollary 7.21], we may assume that the generators of A are generic elements, say
X1, . . . , Xt. We adjoin the Peirce components of these generic elements, noting
that because the polynomial obtained by Theorem 4.24 is fully hiked, all substitu-
tions involving these Peirce components involve a product of a maximal number of
radical elements and thus still are in its T-ideal I.

Let Ĉ ′ be the commutative algebra generated by all the characteristic coefficients
in the statement of the theorem. Then Ĉ ′ is a finite module over Ĉ, implying Â is
finite over Ĉ, in view of Shirshov’s Theorem. �

Note that in the affine case we can work with finitely many entries, and thus Ĉ ′

is a finite module; this simple argument fails in the nonaffine case, which explains
why this theory only applies to affine algebras.

We want to adjoin the matrix q̄-characteristic coefficients by means of evaluations
of the hiked polynomial f̃ . This can be done for the largest size Peirce components
of these new components (applied simultaneously to each generator and each Peirce

component) to obtain an algebra Â, and we obtain a finite submodule via the
following modification of Shirshov’s Theorem:

Definition 4.27. Given a module M over a C-algebra A and a commutative sub-
algebra C1 ⊂ A, we say that an element a ∈ A is integral over C1 with respect
to M if there is some monic polynomial f ∈ C1[λ] such that f(c)M = 0. C1 is
integral with respect to M if each element of C1 is integral with respect to M .

Theorem 4.28. Suppose A = C{a1, . . . , a�} and M is an A-module, and A con-
tains a commutative (not necessarily central) subalgebra C1 such that each word in
the generators of length at most the PI-degree is integral over C1 with respect to M ,
and furthermore (aic − cai)M = 0 for each 1 ≤ i ≤ � and each c ∈ C1. (In other
words, A/AnnAM is a C1-algebra in the natural way.) Then A/AnnM is finite as
a C1-algebra.

Proof. Apply Shirshov’s Height Theorem [5, Theorem 2.3] to A/AnnA M . �

Inspired by [8, Theorem 3.11], we formulate the following definition.
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Definition 4.29. Suppose Γ is the full quiver of an algebra A. A reduction of Γ
is a pseudo-quiver Γ′ obtained by at least one of the following possible procedures:

(1) New relations on the base ring and its pseudo-quiver Γ′ obtained by appro-
priate new gluing. This means:

• Gluing, perhaps up to infinitesimals, with or without a Frobenius twist
(when the gluing is of a block with itself, with a Frobenius twist, it
must become finite).

• New quasi-linear relations on arrows, perhaps up to infinitesimals.
• Reducing the matrix degree of a block attached to a vertex.

(2) New linear dependences on vertices (which could include canceling extra-
neous vertices) between which any two paths must have the same grade.

A subdirect reduction {Γ′
1, . . . ,Γ

′
m} of Γ is a finite set of reductions of Γ. A

quiver is subdirectly irreducible if it has no proper subdirect reduction.

Lemma 4.30. Every descending chain of reductions of our original pseudo-quiver
must terminate after a finite number of steps.

Proof. By definition, any reduction erases or identifies vertices or arrows (after
sufficiently many new quasi-linear relations), or lowers the degree vectors of the
branches lexicographically, or lowers their grades (Remark 3.6). Each of these
processes must terminate, so the reduction procedure must terminate. �

This is the key to our discussion of Specht’s problem, since it enables us to
formulate proofs by induction on the reduction of a pseudo-quiver.

Lemma 4.31. Suppose the algebra A and the polynomial f̄ are as in Lemma 4.25.
Then the full quiver Γ′ corresponding to the T-ideal id(A) ∪ {f̄} is a reduction of
the full quiver Γ corresponding to the id(A).

Proof. By construction, f̄ has nonzero evaluations along the algebra of Γ, so the
full quiver Γ′ could not be Γ, and thus must be a reduction. �

Remark 4.32. In summary, given a T-ideal I, the Zariski closure A of its relatively
free algebra F{x}/I has some full quiver Γ. Any A-admissible non-identity f gives
rise to a symmetrized q̄-characteristic coefficient-absorbing polynomial f̄ , not an
identity of A. Letting I ′ be the T-ideal generated by I ∪ {f̄}, we see that the
full quiver Γ′ of the Zariski closure A of the relatively free algebra F{x}/I ′ is a
reduction of Γ.

5. Solution of Specht’s problem

for affine algebras over finite fields

Our verification of Specht’s problem over finite fields involves an inductive pro-
cedure on full quivers. After getting started, we need each chain of reductions of a
full quiver to terminate after a finite number of steps. To do so, we must cope with
infinitesimals, which appear in Definition 4.29, requiring a few observations about
Noetherian modules in order to wrap up the proof. In all of the applications here,
the Noetherian module will be a relatively free associative algebra, but for future
applications to nonassociative algebras we rely only on the module structure and
state these basic observations without referring to the algebra multiplication. Since
Specht’s problem is solved by Kemer in characteristic 0, we assume throughout this
section that the base field has characteristic p.
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5.1. Torsion over fields of characteristic p. Throughout this subsection, we
assume that F is a field of characteristic p, and C is a commutative Noetherian
F -algebra.

Definition 5.1. Let M be a C-module. For any a ∈ M , an element c ∈ C is
a-torsion if there is k > 0 such that cka = 0. An element c ∈ C is M -torsion if it
is a-torsion for each a ∈ M . We define tor(C)a = {c ∈ C : c is a-torsion}.
Lemma 5.2. For any finite C-module M and any a ∈ M , tor(C)a is an ideal of

C. Furthermore, define tor(C)a;k = {c ∈ tor(C)a : cp
k

a = 0}. Then tor(C)a =
tor(C)a;k for some k.

Proof. tor(C)a is an ideal, since we are in characteristic p. Then the series

tor(C)a;1 ⊆ tor(C)a;2 ⊆ · · ·
stabilizes, so tor(C)a = tor(C)a;k for some k. �

Proposition 5.3. Suppose Â = Ĉ{a1, . . . , at} is a relatively free, affine alge-

bra over a commutative Noetherian F -algebra Ĉ. Then Â is a finite subdirect
product of an algebra Â′ defined over the Ĉ/tor(Ĉ)ai

, 1 ≤ i ≤ t, together with

the
{
Â/cjÂ : c ∈ Ĉ, j < k

}
where k is the maximum of the torsion indices of

a1, . . . , at.

Proof. Let Âi denote the direct product of the localizations of Â at the (finitely
many) minimal prime ideals of AnnC ai. There is a natural map

φ : Â →
⊕

Âi ⊕

⎛
⎝ ⊕

c∈Ĉ, j<k

Â/cjÂ

⎞
⎠ .

If a ∈ kerφ, then looking at the first component we see that a is annihilated by
some power of some c ∈ Ĉ, but this is preserved in one of the other components of
φ(Â); hence, a = 0. In other words, φ is an injection. �

We quote [8, Lemma 3.10], in order to continue:
Suppose A is a relatively free PI-algebra with pseudo-quiver Γ with respect to a

representation ρ :A �→ Mn(C), and I = id(A) is a C-closed T-ideal. Then A is
PI-equivalent to the algebra of the pseudo-quiver Γ.

5.2. The main theorem in the field-theoretic case. We are ready to solve
Specht’s problem for affine algebras over finite fields. Let us recall a key result
from [5, Corollary 4.9].

Proposition 5.4. Any T-ideal of an affine F -algebra contains the set of identities
of some finite dimensional algebra, and thus of Mn(F ) for some n.

(The proof is characteristic free: The radical is nilpotent by the theorem of
Braun-Kemer-Razmyslov, so one can display the relatively free algebra A as a
homomorphic image of a generalized upper triangular matrix algebra, by a theorem
of Lewin, which satisfies the identities of n× n matrices.)

Lemma 5.5. Suppose A is a relatively free affine algebra in the variety of a Zariski
closed algebra B.

Consider a maximal path in the full quiver of B with the corresponding degree
vector vA. Let J be the ideal generated by the homogeneous elements of the degree
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vector vA. Then A/J is the relatively free algebra of a Zariski closed algebra, and
hence representable, and its full quiver has fewer maximal paths of degree vA than A.

Proof. The proof is similar to that of the Second Canonization Theorem, [8, The-
orem 3.7]. Consider a maximal graded component in A. Add characteristic coeffi-
cients of the generators of the generic algebra constructed from B, and note that
they agree with the grading of the paths. Factoring out the product corresponding
to the maximal degree vector we obtain a representable algebra, B′. Construct the
full quiver of B′ as in the proof of [8, Theorem 3.7]. Then all paths in B′ have fewer
maximal paths of degree vA, and A/J is the relatively free algebra of B′. �

We say that a T-ideal I of F{x} is representable if F{x}/I is a representable
algebra.

Theorem 5.6. Suppose A is a relatively free, affine PI-algebra over a field F .
Then any chain of T-ideals in the free algebra of F{x} ascending from id(A) must
terminate.

Proof. First, we need to move to representable affine algebras. But, by Proposi-
tion 5.4, the T-ideal of A contains the T-ideal of a finite dimensional algebra, so we
can replace A by that algebra.

We want to show that any ascending chain of T-ideals

(22) I1 ⊆ I2 ⊆ I3 ⊆ · · ·

in the free algebra F{x}, with I1 = id(A), stabilizes. For each j, let I(0)
j ⊆ Ij denote

the T-ideal of A generated by symmetrized q̄-characteristic coefficient-absorbing
polynomials of Ij having a nonzero specialization with maximal degree vector.

Then we get the chain

(23) I1(0) ⊆ I2(0) ⊆ I3(0) ⊆ · · · .
Let Γ be the full quiver of A, so id(A) = id(Γ). Let vA denote the maximal degree

vector for a nonzero evaluation of some polynomial in A. Since I(0)
j is Noetherian,

by Theorem 4.28 applied to Theorem 4.26, we can define I(1)
j to be the maximal

T-ideal of Â contained in Ij .
Then, the chain

(24) I1(1) ⊆ I2(1) ⊆ I3(1) ⊆ · · ·

of ideals is in the Noetherian algebra Â, and thus stabilizes at some I(1)
j0

.

Passing to A/I(1)
j0

, we may assume that I(1)
j = 0 for each j > j0. Hence, A/I(1)

j0
⊆

Â/I(1)
j0

is representable. If I(0)
j were nonzero, then the fully hiked polynomial of

some 0 �= f ∈ I(0)
j would be in I(1)

j = 0, a contradiction. Thus, I(0)
j = 0 for each

j > j0. In other words, Ij has only zero evaluations in degree vA.

Finally, let J be the T-ideal defined in Lemma 5.5. Thus J ∩ Ij = I(0)
j , so

passing to A/J , which is relatively free and representable by Lemma 5.5, we lower
the maximum degree vector, and conclude by induction.

But these lift to a chain of ideals of the Noetherian algebra Â, which must

stabilize, and thus (24) stabilizes at some I(0)
j0

. Passing to A/I(0)
j0

and starting the

chain at j0, we may assume that I(0)
j = 0 for each j.
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We let vB be the degree vector of some A-admissible polynomial, and let IB be
the T-ideal of Theorem 4.24, which shows that Ij ∩ IB = 0 for each j > j0. Let

Ij = (Ij +IB)/IB, a T-ideal of the relatively free algebra F{x}/IB for each j > j0.
By induction on the maximal degree vector of the quiver, applied to the relatively
free algebra F{x}/IB, the chain of T-ideals

(25) Ij+1 ⊆ Ij+2 ⊆ Ij+3 ⊆ · · ·
must stabilize, so we conclude that the original chain of T-ideals must stabilize. �

6. A solution of Specht’s problem for PI-proper T-ideals

of affine algebras over arbitrary commutative Noetherian rings

Using the same ideas, we can finally prove Specht’s problem for affine PI-algebras
over a commutative Noetherian ring C. Our strategy is to reduce to algebras over
fields, since this case is already solved. The argument is based on a formal reduction
from algebras over rings to algebras over fields, much of which we formulate rather
generally for algebras which are not necessarily associative. Accordingly, we fix a
given algebraic variety V of algebras, and consider Specht’s problem for algebras in
V . When necessary, we take V to be the variety of associative algebras.

One can construct the free nonassociative algebra, whose elements are polynomi-
als, where we also write them in parentheses to indicate the order of multiplication.
The T-ideal of a set of polynomials in an algebra A is the ideal generated by
all substitutions of these polynomials in A. The variety V itself is defined by a
T-ideal IV of identities of the free nonassociative algebra, and the correspond-
ing factor algebra is the relatively free algebra of the variety V . (For example,
when V is the variety of associative algebras, IV is generated by the associator
(x1x2)x3−x1(x2x3).) Specht’s problem now is whether every chain of ascending T-
ideals containing the associator stabilizes or, equivalently, if every T-ideal is finitely
based modulo the T-ideal Iassoc of the associator.

There is an extra technical issue, since usually the definition of PI requires that
the ideal of the base ring generated by the coefficients of the PIs is all of C. (This
is obviously the case when C is a field.) We call such a T-ideal PI-proper, and start
in this section with that case. Finally, in §7 we prove the general result for T-ideals
which are not necessarily PI-proper.

6.1. Reduction to algebras over integral domains. The considerations of this
section apply to arbitrary algebraic varieties (not necessarily associative).

Definition 6.1. We say that a Noetherian ring C is V-Specht if Specht’s problem
has a positive solution in the variety V for PI-proper T-ideals defined over C, i.e.,
any PI-proper T-ideal generated by polynomials f1, f2, . . . is finitely based modulo
IV . We say that C is almost V-Specht if C/I is V-Specht for every nonzero ideal
I of C. If V is not specified here, it is assumed to be the variety of associative
algebras.

Remark 6.2. Here is the general reduction of Specht’s problem to the case when C
is an integral domain. We need to show that any T-ideal generated by polynomials
f1, f2, . . . is finitely based modulo IV . Let Ij be the T-ideal generated by f1, . . . , fj .
By Noetherian induction, we may assume that C is almost V-Specht. Suppose
c1c2 = 0 for 0 �= c1, c2 ∈ C. By Noetherian induction, the system {fj} is finitely
based over c2A, so there is some j0 for which each fj = gj + c2hj , where gj ∈ Ij0
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and hj is arbitrary. The polynomials fj can be replaced by c2hj for all j > j0. But
the T-ideal generated by {c2hj : j > j0} in A/c1A is finitely based, by Noetherian
induction over C/c1C.

Thus, we are done unless c1c2 �= 0 for all 0 �= c1, c2 ∈ C, implying that C is an
integral domain.

6.2. Reduction to prime power torsion. By Remark 6.2, we may assume from
now on that C is an almost V-Specht integral domain. Also, we assume that C
is infinite, since otherwise C is a field, and we have solved the case of fields. To
proceed further, we also introduce torsion in the opposite direction.

Definition 6.3. Let M be a module over a commutative integral domain C. For
z ∈ C define AnnM (z) = {a ∈ M : za = 0}.

AnnM (z) is called the z-torsion of M . M is z-torsionfree if AnnM (z) = 0.
For I � C and a C-module M , define torI(M) =

⋃
0�=z∈C AnnM (z), a C-submodule

of M since C is an integral domain.
The z-torsion index of M is k if the chain

AnnM (z)⊆ AnnM (z2)⊆ · · · ⊆ AnnM (zk)⊆ · · ·
stabilizes at k. Reversing Definition 5.1, we say that M is z′-torsionfree if its
w-torsion submodule is 0 for each prime w not dividing z.

Lemma 6.4. If A is a relatively free algebra and c ∈ C, then AnnA c is a T-ideal,
with cA ∼= A/AnnA c as C-modules (but not necessarily as C-algebras). We have
an inclusion-reversing map {Ideals of C} → {T-Ideals of A} given by I �→ torI(A).

Proof. AnnA c is clearly a T-ideal, by Lemma 1.1, and the rest of the first assertion
is standard. The second assertion is likewise clear. �

In any commutative Noetherian domain, any element can be factored as a finite
product of irreducible elements (although not necessarily uniquely).

Proposition 6.5. Any module over an integral domain C whose torsion involves
only finitely many irreducible elements is a subdirect product of finitely many z′-
torsionfree modules, where z ranges over these irreducible elements of C.

Proof. Follows at once from the lemma. �
The following is a closely related result, which we record for reference in future

work:

Proposition 6.6. Any Noetherian Z-module is a subdirect product of finitely many
p′-torsionfree modules, where p ranges over the prime numbers.

6.3. Homogeneous T-ideals. Recall that a polynomial is homogeneous if for
each indeterminate xi each of its monomials has the same degree in the indeter-
minate xi. Since the degrees grade the free algebra, any polynomial has a unique
decomposition as a sum of homogeneous polynomials, which we call its homoge-
neous components. Recall that a T-ideal I is homogeneous if it contains all of
the homogeneous components of each of its polynomials.

Remark 6.7. Although any homogeneous T-ideal is clearly generated by homo-
geneous polynomials, in general, homogeneous polynomials need not generate a
homogeneous T-ideal, because of the vagaries of the quasi-linearization procedure
(see [9, Example 2.2] and [5, Exercise 13.10]).
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Definition 6.8. A set of polynomials S is ultra-homogeneous if it contains the
homogeneous component of every element in S, as well as of the quasi-linearizations
of all polynomials in S.

The ultra-homogeneous closure Suh of a set S is the intersection of all ultra-
homogeneous sets containing it. (The ultra-homogeneous closure of a finite set is
finite, since the procedure terminates for each polynomial after finitely many steps.)

The homogeneous socle Isoc of a T-ideal I is the union of homogeneous T-
ideals contained in I.

Note that any homogeneous T-ideal I contains the homogeneous components
of the quasi-linearizations of each of its polynomials, so is automatically ultra-
homogeneous.

Proposition 6.9. The T-ideal generated by an ultra-homogeneous set of polyno-
mials S is homogeneous.

Proof. We need to show that the homogeneous components of any substitution
remain in the T-ideal I generated by S = Suh. By definition of quasi-linearization,
it is enough to check this for monomial substitutions. But these are specializations
of substitutions of letters (taking a different letter for each monomial), and thus are
specializations of the homogeneous components of the quasi-linearizations, which
by definition are in I. �

In particular every set of multilinear identities generate a homogenous T-ideal.

Corollary 6.10. Let V be a variety satisfying the ACC on homogeneous T-ideals.
Then every homogeneous T -ideal is finitely based.

Proof. The ultrahomogeneous closure of a finite set of polynomials is finite. �
Let z ∈ C be any nonzero element. Our overall goal would be to prove for-

mally that if every field is V-Specht, then every commutative Noetherian ring is
V-Specht. Unfortunately, this is not quite in our grasp, since one detail still relies
on associativity. We can prove the following theorem:

Theorem 6.11. Let V be a variety of algebras such that every field is V-Specht. If
an integral domain C is almost V-Specht, and is V-Specht with respect to homoge-
neous T-ideals, then C is V-Specht.

Taking V to be the class of associative algebras, we conclude by proving that if
a Noetherian ring C is almost Specht and every field is Specht, then C is Specht
with respect to homogeneous T-ideals.

This will affirm Specht’s problem for affine PI-algebras over an arbitrary Noe-
therian ring, and together with Theorem 7.6 below will affirm Specht’s problem for
arbitrary affine algebras over a Noetherian ring.

We deal with the reduction for other varieties in a subsequent paper.

6.3.1. Proof of Theorem 6.11. Although we are working in the context of associa-
tive algebras, the proof of Theorem 6.11 also works analogously for nonassociative
algebras.

Lemma 6.12. Suppose I is a T-ideal, and f =
∑

fi ∈ I has total degree n (where
fi are the homogeneous components). Then for every Vandermonde determinant d

of order n, d〈f〉uh ⊆ I.
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Proof. Substitute λjxj for xj , for fixed j. Let d denote the determinant of the
Vandermonde matrix (λi

j) and i = 1, . . . , n. The homogeneous components of
df are in I, by the usual Vandermonde argument of multiplying by the adjoint
matrix. �

Lemma 6.13. Suppose C is V-Specht with respect to homogeneous T-ideals, and I
is a proper T-ideal that properly contains its homogeneous socle I0. Then I contains
a homogeneous T-ideal of the form dI1, where I1 ⊃ I0 is a finitely based, proper
T-ideal. (Here d is a product of Vandermonde determinants.)

Proof. Take a proper polynomial f ∈ I \ I0. By Lemma 6.12 there is 0 �= d1 ∈ C
such that d1fi ∈ I, where fi are the homogeneous components of the quasi-
linearizations of f . Continuing with the quasi-linearization procedure, which is
finite, we see by induction that there is some d′ such that d′gi,j ∈ I, for each

component gi,j in the various quasi-linearizations, implying d′d1〈f〉uh ⊆ I, as de-
sired. �

Note that we had to take the ultra-homogeneous closure of a polynomial, and
not a T-ideal, to remain with a finite set of polynomials. We are ready to prove
Theorem 6.11.

Proof. LetA be an algebra in V . We introduce some notation: Given z ∈ C and a T-
ideal Γ, we write IΓ(z) for the kernel of the composite map A → zA → zA/(Γ∩zA).

By hypothesis we can take z ∈ C with Iγ(z)uh maximal, and we write zΓ for z and
J (Γ) for Iγ(z). J (Γ) = J (Γ)

soc
, since otherwise we could use Lemma 6.13 to

increase J (Γ)
soc

, contrary to its definition. Hence, J (Γ) is already homogeneous.

Given a chain Γ1 ⊆ Γ2 ⊆ · · · of T-ideals of A, we see by the hypothesis on
homogeneous T-ideals that there is i such that J (Γj) = J (Γi) for all j ≥ i. Write
ẑ =

∏
j≤i zΓj

. Then the J (Γj)∩ ẑA also stabilize. If some Γj∩ ẑA properly contains

J (Γi)∩ ẑA, then it has a (nonhomogeneous) polynomial f and thus contains ẑfuh,
which is impossible unless ẑC is a proper ideal of C.

But Ij(A)/ẑIj(A) is a T-ideal over C/ẑC, so we conclude by Noetherian induc-
tion. �

6.4. Conclusion of the solution of Specht’s problem for arbitary affine
PI-algebras over Noetherian rings. We start with some general considerations
that can be used for arbitrary varieties. The following well-known fact is a key
ingredient, yielding a tool for applying Noetherian induction.

Lemma 6.14 (Baby Fitting Lemma). Let M be a C-module, with z ∈ C, and take
any k ∈ N. Suppose AnnM (zk+1)⊆ AnnM (zk). Then zkM ∩ AnnM (z) = 0.

Proof. If zka ∈ AnnM (z), then zk+1a = 0, implying zka = 0 by assumption. �

We also need some easy facts from module theory.

Lemma 6.15. Let M,N be modules over a commutative ring C. Let f :M→N be
a homomorphism of modules.

(i) For every z, z′ ∈ C, if the induced homomorphisms f ′ :M/z′M→N/z′N and
f ′′ : z′M/zz′M→z′N/zz′N are 1:1, then so is the induced homomorphism

f ′′′ :M/zz′M→N/zz′N.

Licensed to Bar-Ilan University. Prepared on Sun Apr 17 07:18:56 EDT 2016 for download from IP 132.71.121.13.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5586 ALEXEI BELOV-KANEL, LOUIS ROWEN, AND UZI VISHNE

(ii) If the induced homomorphisms ziM/zi+1M→ziN/zi+1N are 1 : 1 for every
0 ≤ i < k, then the induced homomorphism M/zkM→N/zkN is 1:1 as well.

Proof. (i) If a ∈ ker f ′′′, then a+ z′M ∈ ker f ′ = 0, implying a ∈ ker f ′′ = 0.
(ii) By induction on k, taking z′ = zk−1 in the previous lemma. �
Let S denote the monoid generated in C by z. Recall that

S−1M =
{
s−1a : s ∈ S, a ∈ M

}
,

where s−1a = s′−1a′ if there is s0 ∈ S such that s0(s
′a − sa′) = 0. In particular

s−1a = 0 if there is s0 ∈ S such that s0a = 0.

Lemma 6.16. Let f :M→N be a homomorphism of C-modules, and let z ∈ C. Let
f ′ :S−1M→S−1N and fi :M/ziM→N/ziN be the induced homomorphisms, where
S is the monoid generated by z.

(1) Assume N has z-torsion index k. If every fi is one-to-one and f ′ is onto,
then the restriction f |zkM : zkM → zkN is onto.

(2) Assume M has z-torsion index k. If f ′ is one-to-one, then the restriction
f |zkM : zkM → zkN is one-to-one.

(3) Assume M has z-torsion index k. If fk and f ′ are one-to-one, then f is
one-to-one.

Proof. (1) Let b ∈ N . By assumption there is an element z−�a ∈ S−1M such
that z−�f(a) = f ′(z−�a) = 1−1b ∈ S−1N , so for some �′ ≥ 0 we have that

z�
′
f(a) = z�+�′b. Then f�+�′(z

�′a + z�+�′M) = f(z�
′
a) + z�+�′N = 0, so

z�
′
a = z�+�′a′ for some a′ ∈ M . But now z�+�′b = f(z�

′
a) = z�+�′f(a′),

so z�+�′(b − f(a′)) = 0. Since the torsion index of N is k, we have that
zkb = f(zka′).

(2) Let a ∈ M be such that f(zka) = 0. Then f ′(1−1zka) = 1−1zkf(a) = 0
in S−1N , so by assumption 1−1zka = 0, namely for some � ≥ 0, zk+�a = 0.
Since k is the z-torsion index of M , we have that zka = 0.

(3) Let a ∈ M be such that f(a) = 0. Then fk(a + zkM) = 0 + zkN , so
a ∈ zkM , but then (2) implies that a = 0. �

Finite torsion index is essential in Lemma 6.16 (which is why Lemma 6.20 below
only applies to homogeneous T-ideals).

Example 6.17. (An example where the restrictions f ′ and fi are isomorphisms,
but f |zkM : zkM → zkN is neither onto nor one-to-one). Let C = F [z], and P =
F [[z−1]]/F with the natural C-module structure. Since multiplication by z is onto,
P/ziP = 0 for every i, and S−1P = 0 since 1−1(z−i) = z−izi(z−i) = z−i0 = 1−10.
Let f be the zero map from P ⊕0 to 0⊕P ; it is neither one-to-one nor onto, but the
induced maps fi and f ′ are clearly (trivial) isomorphisms. Indeed, P has infinite
z-torsion index.

Remark 6.18. For any z ∈ C, zA ∼= A/Ann z is a T-ideal of A.

To progress with the proof over an arbitrary base ring, we first need the special
case where the T-ideal contains a representable T-ideal.

Theorem 6.19 (Small Specht Theorem). Let C be an almost Specht, commutative
Noetherian ring, and A an affine PI-algebra containing a representable T-ideal I,
i.e., the algebra A/I is representable. Then any chain of T-ideals in the free algebra
of C{x} ascending from id(A) stabilizes.
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Proof. By Remark 6.2, C is an integral domain. We need to show that any ascend-
ing chain of PI-proper T-ideals

(26) I1 ⊆I2 ⊆I3 ⊆ · · ·

of A, stabilizes. Since I ⊆ I1, we may replace A by A/I, and assume that A
is representable. We view A ⊆ Mn(K), where K is an algebraically closed field
containing C. If C is finite, then it is a field, and we are done by Theorem 5.6.
So we may assume that C is an infinite integral domain. Denoting AK as AK , we
work with respect to a quiver Γ of AK as a K-algebra.

As in Theorem 5.6, let I(1)
j be the maximal subideal of Ij closed under multi-

plication by Ĉ of Theorem 4.26. Thus

(27) I(1)
1 ⊆I(1)

2 ⊆I(1)
3 ⊆ · · ·

are ideals in the Noetherian algebra Â = ĈA, so this chain stabilizes, and we may

assume I(1)
j = I(1)

j0
for j > j0.

For a T -ideal I of A, let I = KI, taken in AK . Define Ĩ = KI ∩ A ⊇ I. Let

A′ = A/I(1)
j0

. Passing down to A′, we shall pass further to A/Ĩ(1)
j0

.

The quotient Ĩ(1)
j0

/I(1)
j0

is torsion, so there is 0 �= z ∈ Ĉ such that zĨ(1)
j =

zĨ(1)
j0

⊆I(1)
j0

. The chain AnnÂ z⊆ AnnÂ z2 ⊆ · · · ⊆ AnnÂ zk ⊆ · · · stabilizes at some

k, by the Noetherianity of Â. Now, applying the baby Artin-Rees lemma to Â/I(1)
j0

,
we see that

zkÂ ∩ Ĩ(1)
j ⊆I(1)

j0
.

In particular the natural map

A′→(A′/zkA′) ⊕ (A/Ĩ(1)
j0

)

is an injection. The image of the chain (26) of the first summand on the right
stabilizes by applying Noetherian induction. Thus, we pass to the second sum-
mand of the right, which has no C-torsion. Letting J be the ideal constructed in

Lemma 5.5, we have for every j > j0 that Ij ∩ J = 0 in AK/AK Ĩ(1)
j0

as in the last

paragraph of the proof of Theorem 5.6. Hence, a fortiori, Ij ∩J = 0 in A/Ĩj0 . We
are done by induction on the degree vector. �

Lemma 6.20. Suppose z ∈ C such that C/zC and C[z−1] are V-Specht. Then C
satisfies the ACC on homogeneous T-ideals from V.

Proof. By induction on the length of z as a product of primes, we may assume that
z is prime. Let A be an affine algebra over C, and let

I1 ⊆I2 ⊆I3 ⊆ · · ·

be an ascending chain of T-ideals in A.
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Let Ai = A/Ii, and consider the infinite commutative diagram

(28) A1/zA1
��

��

zA1/z
2A1

��

��

z2A1/z
3A1

��

��

z3A1/z
4A1

��

��

· · ·

A2/zA2
��

��

zA2/z
2A2

��

��

z2A2/z
3A2

��

��

z3A2/z
4A2

��

��

· · ·

A3/zA3
��

��

zA3/z
2A3

��

��

z2A3/z
3A3

��

��

z3A3/z
4A3

��

��

· · ·

...
...

...
...

where the left-to-right maps are multiplication by z, and the top-to-bottom arrows
are the natural projections. So all the maps are projections.

We claim that outside a certain rectangle, all the maps in this infinite matrix
are one-to-one. Indeed, the entries are algebras over C/zC, so each row stabi-
lizes by assumption. Letting Bi denote the final algebra in row i, we obtain
a chain of projections B1→B2→· · · which must also stabilize, proving that for
some k0, all of the rows stabilize after k0 steps. We are done since each of the
first k0 columns stabilizes. It follows that when i is large enough, all the maps
zjAi/z

j+1Ai→zjAi+1/z
j+1Ai+1 are isomorphisms, so by Lemma 6.15.(ii), the nat-

ural projection Ai→Ai+1 induces isomorphisms Ai/z
jAi→Ai+1/z

jAi+1 for every
j.

Similarly, the chain of projections

C[z−1]A1→C[z−1]A2→· · ·
stabilizes by the assumption on C[z−1].

Let i be large enough. Since Ii ⊆Ii+1 are homogeneous, the natural projection
Ai→Ai+1 preserves the degree grading. Each homogeneous component is finite as a
C-module since A is affine, and thus Noetherian, and therefore has finite z-torsion
index. By Lemma 6.16.(3), the map in each component is one-to-one, proving that
Ii = Ii+1. �

The main idea in the proof given above is a simple version of a spectral sequence.
Having proved a special case, we do a more general case (in fact, our most general
version holds for an arbitrary variety V of algebras).

Theorem 6.21. Suppose the relatively free algebra A with respect to a T-ideal I
is z′-torsionfree for some z ∈ C, where I is generated by a polynomial all of whose
coefficients are ±1. Then any increasing chain of T-ideals of A starting with I
must terminate, for any commutative Noetherian ring C.

Proof. Writing z as a product of primes, we may assume that z is prime. Let C0 be
the subring of C generated by 1. Letting L be the field of fractions of C0/(C0∩zC),
we pass to A⊗C0

L, so we may assume that C0 is a field. (If there is no p-torsion
at any step, then we can localize at the natural numbers and reduce to the case
of Q-algebras, which was solved by Kemer.) But C0[z] thus is a PID, and by the
argument in Lemma 6.20, we can break up our chain into chains of T-ideals defined
over C/zC, so we conclude by Lemma 6.20. �

So far, these arguments have been applied to arbitrary varieties, and in fact
there are Lie, alternative and Jordan versions of Iltyakov [14, 15] and Vais and
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Zelmanov [27]; their proofs are rather delicate, in part because it is still unknown
whether any alternative, Lie, or Jordan algebra satisfying a Capelli system of identi-
ties must satisfy all the identities of a finite dimensional algebra. Belov [3] obtained
a version of the Small Specht Theorem (Theorem 6.19) for classes of algebras of
characteristic 0 asymptotically close to associative algebras; this includes alterna-
tive and Jordan algebras.

Our method here is to develop some theory to take care of torsion in polynomials,
to conclude the proof of Theorem 6.22 below. In other words, we need some local-
global correspondence that will enable us to pass from the global situation with
torsion to the local situation without torsion. Our main tool is Proposition 6.5, but
this only enables us to handle a finite number of irreducible elements of C producing
torsion, whereas there might be an infinite number of such elements. Thus we need
some way of cutting down from infinite to finite.

The most direct argument relies on an (associative) result only available in Rus-
sian. Procesi asked whether the kernel of the canonical homomorphism id(Md(Z))→
id(Md(Z/pZ)) is equal to p id(Md(Z)).

Schelter and later Kemer [20] provided counterexamples, but Samŏılov [25]
showed that if p > 2d, the kernel of the canonical homomorphism id(Md(Z)) →
id(Md(Z/pZ)) is indeed equal to p id(Md(Z)). Unfortunately, this result appears so
far only in his doctoral dissertation [25].

Thus, we give two versions for the conclusion of the proof of the next theorem,
the first relying on Samŏılov’s Theorem, and the second for those readers who would
prefer a full proof of Theorem 6.22 in English. Another advantage of the second
proof is that its reduction argument works for arbitrary varieties.

Theorem 6.22. Any PI-proper T-ideal I of C{x1, . . . , x�} is finitely based, for any
commutative Noetherian ring C.

Proof. Let A be the relatively free algebra of I. We can replace I by the T-ideal of
a PI-proper polynomial f contained in it. But by Amitsur [5, Theorem 3.38], any
PI-algebra satisfies a power of a standard polynomial, so we may assume f is such
a polynomial, and thus has all nonzero coefficients in {±1}.

Consider the localization A �→ A ⊗Z Z/pZ, viewed as a Cp/pCp-algebra. By
a theorem of Bergman and Dicks [10], there is a canonical homomorphism of A
to a representable algebra, whose kernel M , in view of Lewin’s theorem, vanishes
modulo p for any prime p, i.e., when we map A �→ A⊗ZZ/pZ, viewed as a Cp/pCp-
algebra. But the map A→A⊗ZZ/pZ is faithful whenever the kernel of the canonical
homomorphism id(Md(Z)) → id(Md(Z/pZ)) is equal to p id(Md(Z)), where d is the
size of matrices in the representation, which by Samŏılov’s Theorem [25] happens
when p > 2n, showing that A is (2n)!-torsionfree. The claim then follows by
Theorem 6.21. �

We now turn to the second proof.

Remark 6.23. The point here is that in view of Proposition 2.30, takingM to be the
T-ideal generated by f as notated there, assuming that A satisfies a Capelli identity
cn+1 and we are in a matrix component of degree n, the relatively free algebra A
is integral over the affine C-algebra C[ξ] where ξ denotes the set of characteristic
coefficients formally corresponding to the finitely many δ operators. Unfortunately,
this case can be assured only when C is a field, but by a careful use of localization
we can formulate a local-global framework in which we can utilize this situation.
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Second proof of Theorem 6.22. Let A = C{a1, . . . , a�} be the relatively free algebra
of I. We formulate an inductive argument in analogy to Theorem 5.6. In order
to apply the theory of full quivers, we need to pass to some field. By Remark 6.2
we may assume that C is an integral domain. Let F denote the field of fractions
of C, and let AF := A ⊗C F . We consider I ⊗ F which contains the ideal of
identities of AF . Unfortunately, (I ⊗ F ) ∩ C{x} might properly contain I. If the
torsion over C only involved finitely many primes we could handle this by means
of Proposition 6.5, but this need not be the case. Thus, we need a more delicate
argument which enables us to relate I with IF .

Step 1. We start with a proper PI of A. As mentioned in the first proof, Amitsur [5,
Theorem 3.38] says that every PI-algebra satisfies some power of a standard identity,
which we denote here as f . Let I0 denote the T -ideal of C{x} generated by f ,
contained in I, so I0⊗F is the T -ideal of F{x} generated by f , contained in I⊗F .
The relatively free algebra F{x}/(I0 ⊗ F ) has some full quiver Γ1. Although Γ1

does not have much to do with the original algebra A, it provides a base for an
inductive argument, as well as a handle for using our field-theoretic results. Since
the chain of reductions of any full quiver must terminate after a finite number of
steps, we induct on Γ1.

We need to show that every chain C = {I1 ⊆I2 ⊆I3 ⊆ · · · } of T -ideals ascending
from I0 stabilizes. Over the field F , we could do this by the argument of Theo-
rem 5.6, which we recall is achieved by hiking f , obtaining matrix characteristic
coefficients for the evaluations of a maximal branch of Γ1, redefining these in terms
of elements of the T-ideal I0⊗F , using Theorem 4.28 to show that this part of the
T-ideal is Noetherian, and then modding it out and applying Noetherian induction.
Unfortunately, working over C might involve C-torsion, which could collapse infi-
nite chains when passing to the field of fractions, F . We can use Proposition 6.5 to
eliminate torsion involved with a given finite set of elements of C, so our strategy
is to show how the whole process just described can be achieved over a localization
of C by a finite number of elements, which are found independently of the specific
chain C. Thus, we can work over this localization just as well as over F , and pass
back to C by means of Proposition 6.5.

Step 2. We rely heavily on Proposition 6.5 in order to eliminate torsion involved
with a given finite set of elements of C, with the aim of modifying A in order to make
it more compatible with Γ1. We say that a T-ideal of F{x} is C-expanded if it is
generated by polynomials ⊂ C{x}. We extend f1 = f to a set {f1, . . . , fk} ⊂ C{x}
generating a maximal possible C-expanded T-ideal of F{x} contained in I ⊗ F .
(Such a finite set exists since we already have solved Specht’s problem over fields,
implying the F{x} satisfies the ACC on C-expanded T-ideals.)

The coefficients of f1, . . . , fk involve only finitely many elements of C. Utilizing
Proposition 6.5, we can localize at these primes to obtain a new base ring C ′ and
assume that A has no torsion at the coefficients of the polynomials f1, . . . , fk. Let
I ′ (resp. I ′⊗F ) denote the T-ideal of C ′{x} (resp. of F{x}) generated by f1, . . . , fk,
whose full quiver over F is denoted as Γ2. This might increase our C ′-expanded
T-ideal over F , requiring us to adjoin more polynomials, and thereby forcing us
to localize by finitely many more primes, but the process must stop since F{x}
satisfies the ACC on C-expanded T-ideals. This achieves our goal of matching a
T-ideal over C with a T-ideal over F .
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Step 3. Our next goal is to hike to a q̄-characteristic coefficient-absorbing polyno-
mial. As in Lemma 5.5, we take a maximal path in the full quiver Γ2. Its polynomial
can be hiked to a finite set of polynomials f̃1, . . . , f̃m. Unfortunately these might
involve torsion with new primes of C ′. But the torsion over C ′ in localizing these
finitely many polynomials involves only finitely many prime elements in C ′, and
by localizing at them we obtain a new base Noetherian ring C ′′ and an algebra
A′′ = A ⊗ C ′′ over it. Now we can appeal again to Proposition 6.5 and replace
A by A′′; thereby, we may assume that A′′ is z-torsionfree for the finitely many
primes z at which we localized. (Perhaps F{x} has more C ′′-expanded T-ideals
than C ′-expanded T-ideals, so we must return to Step 2 and then Step 3, but this
loop must terminate since F{x} satisfies the ACC on T-ideals.)

In this way, we avoid all torsion in computing the q̄-characteristic coefficients
in the maximal matrix components, and thereby perform these calculations in A′′.
In other words, we can use f̃1, . . . , f̃m (taken over C ′′) to calculate q̄-characteristic
coefficients of the products of the generators of A in terms of polynomials.

Starting with C ′′ we let I ′′ (resp. I ′′⊗F ) be the T-ideal of C ′′{x} (resp. of F{x})
generated by f1, . . . , fk and f̃1, . . . , f̃m.

Step 4. This is the most delicate part of the proof. Our strategy in this case is
to go back to mimic the proof of the field-theoretic case (Theorem 5.6), removing
C-torsion step by step when we pass back from F{x} to C ′′{x}. But we must be
careful to do everything in a finite number of steps. We would like to appeal to
compactness from logic, but the argument is more subtle, since certain steps cannot
be put in quantitative form. In particular, we note that the chain

{Ij ⊗C F : j ∈ N}
stabilizes at Ij0 ⊗C F for some j0, which we take to be j0 = 1, and we define

I(0)
1;F ⊆ I1 ⊗C F to be the T-ideal of AF generated by symmetrized q̄-characteristic

coefficient-absorbing polynomials of I1 ⊗C F having a nonzero specialization with
maximal degree vector, as described in the proof of Theorem 5.6.

This is generated by finitely many polynomials of AF , which can be taken from

A′′ and define a T-ideal of A′′ which we call I(0)
1 . Working with I(0)

1;F enables
us to define finitely many characteristic coefficients which we define in terms of
polynomials which we now call g1, . . . , gm ∈ C ′′{x}. Inverting the torsion, i.e.,
localizing at some z ∈ C ′′, we now may assume that the gi are C ′′-torsionfree (and
nonzero since they localize to nonzero elements of F{x}).

We would like to use g1, . . . , gm to define “characteristic coefficients” for the

elements of I(0)
1 ⊂ A′′, but unfortunately these are no longer central. But in-

verting the C ′′-torsion of the gigj − gjgi, 1 ≤ i, j ≤ m, we may assume that

g1, . . . , gm all commute, and I(0)
1 is a module over the commutative Noetherian

ring Ĉ := C ′′[g1, . . . , gm]. This is enough for us to apply Theorem 4.28 to show

that I(0)
1 is a finite module, and thus Noetherian. (We can define the δ-operators

via Remark 6.23, together with the module M which is the T-ideal generated by f̃ .
Note that since we only need consider monomials up to a certain length, we need
to adjoin only finitely many characteristic coefficients, again via localization and
Proposition 6.5.)

In this way, after localizing by finitely many elements of C, we pass to finite
modules over Noetherian rings.
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After all of these localizations we have a new affine base ring C ′′′ ⊃ C ′′, and we
work over Ĉ ′′′ := C ′′′[g1, . . . , gm]. We let I ′′′ be the T-ideal of C ′′′{x} generated by

the new polynomials involved with these extra steps. Thus I ′′′ ⊗F (resp. I ′′′ ⊗ Ĉ)

is the T-ideal of F{x} (resp. of Ĉ ′′′{x}) generated by the same new polynomials.
If I ′⊗F ⊂ I ′′′⊗F , then the quiver of the relatively free algebra F{x}/(I ′′′⊗F )

is a reduction of Γ1, so we conclude by induction on the complexity of the quiver,
in view of Lemma 4.30.

Thus, we may assume that

I ′′′ ⊗ F = I ′ ⊗ F.

Next we look at (I ′′′⊗Ĉ)/(I ′⊗Ĉ). By assumption, this is a torsion submodule of the

Noetherian module I(0)
1;F /(I ′⊗Ĉ) and thus is finite, and so if nonzero it is annihilated

by some nonzero element z ∈ C. We can remove the z-torsion one final time (again
via localization and Proposition 6.5), passing to a new base ring C ′′′′ ⊃ C ′′′ and
T-ideal I ′′′′ (resp. I ′′′′ ⊗ F ) of C ′′′′{x} (resp. of F{x}). If I ′ ⊗ F ⊂ I ′′′′ ⊗ F , then
the quiver of the relatively free algebra F{x}/(I ′′′′ ⊗ F ) is a reduction of Γ1, so
we conclude by induction on the complexity of the quiver, in view of Lemma 4.30.
Thus we may assume that I ′′′′ ⊗ F = I ′ ⊗ F , and since z has been inverted in the
localization we conclude that our ascending chain of T-ideals from I ′ lifts to an
ascending chain of T-ideals from I ′′′′ and we are done by the process given in the
proof of Theorem 5.6. (The point is that the argument of modding out a certain
Noetherian submodule of each T-ideal in A ⊗C C ′′′′ is algorithmic, depending on
computations involving a finite number of polynomials whose C-torsion we have
removed.) This concludes the second proof of Theorem 6.22.

In summary, we have performed various procedures in order to enable us to
reduce the quiver. These procedures involve a T-ideal of F{x} which might increase
because of the procedure, but must eventually terminate because F{x} satisfies the
ACC on T-ideals. But at this stage Step 3 does not vitiate Step 2, and we can
conclude the proof using Step 4 to carve out representable T-ideals over C ′′′′.

Alternatively, one could conclude by applying the compactness in logic to the
proof of Kemer’s theorem and checking that we only need finitely many elements,
which can be computed. Fuller details of the compactness argument are forthcom-
ing when we consider representability and the universal algebra version of Theo-
rem 6.22.

7. The case where the T-ideals are not necessarily PI-proper

Using the same ideas, we can extend Theorem 6.22 still further, considering the
general case where the T-ideals are not PI-proper; in other words, the ideals of C
generated by the coefficients of the polynomials in the T-ideals of C{X} do not
contain the element 1. Towards this end, given a set S of polynomials in C{X},
define its coefficient ideal to be the ideal of C generated by the coefficients of
the polynomials in S. We need a few observations about the multilinearization
procedure.

Lemma 7.1. If a T-ideal I contains a polynomial f with coefficient c, then I also
contains a multilinear polynomial with coefficient c.

Proof. First we note that one of the blended components of f has coefficient c, and
then we multilinearize it. �
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Lemma 7.2. If c is in the coefficient ideal of a T-ideal I of C{x}, then some
multilinear f ∈ I has coefficient c.

Proof. If c =
∑

cisi where si appears as a coefficient of fi ∈ I, then taking the
fi = fi(x1, . . . xmi

) to be multilinear, we may assume that ci is the coefficient of
x1 · · ·xmi

. Taking m > max{mi}, we see that the coefficient of x1 · · ·xm in∑
i

sifi(x1, . . . xmi
)xmi+1 · · ·xm

is 1. �
Corollary 7.3. A T-ideal is PI-proper iff its coefficient ideal contains 1.

Proposition 7.4. Suppose C is a Noetherian integral domain, and I is a T-ideal
with coefficient ideal I. Then there is a polynomial f ∈ Z{x} for which cf ∈ I for
all c ∈ I.

Proof. Since C is Noetherian, we can write I =
∑t

i=1 Cci, and then it is enough to
prove the assertion for c = ci, 1 ≤ i ≤ t.

We take the relatively free, countably generated algebra A whose generators
{y1, y2, . . . , } are given the lexicographic order, and let Mm denote the space of
multilinear words of degree m in {y1, . . . , ym}. In view of Shirshov’s Height Theo-
rem [5, Theorem 2.3], the space

∑
i ciMm has bounded rank as a Z-module. On the

other hand, there is a well-known action of the symmetric group Sm acting on the
indices of y1, . . . , ym described in [5, Chapter 5]. In particular, [5, Theorem 5.51]
gives us a rectangle such that any multilinear polynomial f whose Young diagram
contains this rectangle satisfies cif ∈ I. �

Write M(K) for the generic n×n matrix algebra with characteristic coefficients
over a commutative ring K. Zubkov [29] proved that the canonical map M(Z) →
M(Z/pZ) has kernel pM(Z). (As noted above, this is false if one does not adjoin
characteristic coefficients.) He also proved that the Hilbert series of the algebra
A ⊗Z Q over Q and of A ⊗Z Z/pZ over Z/pZ coincide, implying I is a free Z-
module.

Corollary 7.5. If I is a T-ideal with coefficient ideal I, there is a PI-proper T-ideal
of C{x} whose intersection with I{x} is contained in I.

Proof. We need to show that

(29) I ∩ cA = cI
for any c ∈ C. We take the polynomial f of Proposition 7.4. In view of Proposi-
tion 5.4, the T-ideal of f contains the set of identities of some finite dimensional
algebra, and thus of Mn(C) for some n. Adjoining characteristic coefficients, we
may replace I by a T-ideal of the free algebra with characteristic coefficients, and
conclude with Zubkov’s results [29] quoted above. �
Theorem 7.6. Any T-ideal in the free algebra C{x} is finitely based, for any
commutative Noetherian ring C.

Proof. By Noetherian induction, we may assume that the theorem holds over C/I
for every nonzero ideal I of C. Thus, by Remark 6.2, C is an integral domain. If
C is finite, then it is a field, and we are done by Theorem 5.6. So we may assume
that C is an infinite integral domain. We need to show that any T-ideal generated
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by a given set of polynomials {g1, g2, . . . } is finitely based. The coefficient ideals
of {g1, g2, . . . , gj} stabilize to some ideal I of C at some j0, since C is Noetherian.
We let A0 denote the relatively free algebra with respect to the T-ideal generated
by g1, . . . , gj0 , Inductively, we let Ai denote the relatively free algebra with respect
to the T-ideal generated by fj0+1, . . . , fj0+i, and take a PI-proper polynomial fi+1,
not in id(Ai) such that cfi+1 is in the T-ideal generated by gi+1 in Ai for all c in
the coefficient ideal of gi+1. (Such a polynomial exists in view of Proposition 7.4.)
This gives us an ascending chain of PI-proper T-ideals of A0, which must terminate
in view of Theorem 6.22, a contradiction. �
7.0.1. Digression: Consequences of torsion for relatively free algebras. Torsion has
been so useful in this paper that we collect a few more elementary properties and
apply them to relatively free algebras.

Lemma 7.7. Suppose C is a Noetherian integral domain, and A is a relatively free
affine C-algebra.

(1) A has p-torsion for only finitely many prime numbers p.
(2) There is some k0 such that pk -tor(A) = pk+1 -tor(A) for all k > k0 and all

prime numbers p.
(3) Let φk :A → A ⊗ Z/pkZ denote the natural homomorphism. If pkA �=

pk+1A, then kerφk �= kerφk+1.

Proof. pk -tor(A) is a T-ideal for each k. Let Ik be the T-ideal generated by pk-
torsion elements. The Ik stabilize for some k0, yielding (2), and (3) follows since
once the chain stabilizes we have pkA = pk+1A. Likewise, the direct sum of these
T-ideals taken over all primes stabilizes, yielding (1). �
7.1. Applications to relatively free algebras. As Kemer [19] noted, the ACC
on T-ideals formally yields a Noetherian-type theory. We apply this method to
Theorem 7.6.

Proposition 7.8. Any relatively free algebra A over a commutative Noetherian
ring has a unique maximal nilpotent T-ideal N(A).

Proof. By ACC, there is a maximal nilpotent T-ideal, which is unique since the
sum of two nilpotent T-ideals is a nilpotent T-ideal. �
Definition 7.9. The ideal N(A) of Proposition 7.8 is called the T-radical. An
algebra A is T-prime if the product of two nonzero T-ideals is nonzero. A T-ideal
I of A is T-prime if A/I is a T-prime algebra.

Proposition 7.10. The T-radical is the intersection of a finite number of T-prime
T-ideals.

Proof. Each T-prime T-ideal contains the T-radical, which we thus can mod out.
Then just copy the usual argument using Noetherian induction. �

Kemer characterized all T-prime algebras of characteristic 0; cf. [5, Theorem 6.64].
The situation in nonzero characteristic is much more difficult, but in general we can
reduce to the field case.

Proposition 7.11. Each T-prime, relatively free algebra A with 1 over a commuta-
tive Noetherian ring C is either the free C-algebra or is PI-equivalent to a relatively
free algebra over a field. In particular, either A is free or PI.
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Proof. The center Z of A is an integral domain over which A is torsionfree, since
if c ∈ C has torsion, then 0 = (cA) AnnA(c) implies cA = 0, so c = 0. If Z is finite,
then it is a field and we are done. If Z is infinite, then A is PI-equivalent to A⊗ZK
where K is the field of fractions of Z. �

We see that this theory, in particular Corollary 7.5, provides a method for gen-
eralizing results about relatively free PI-algebras to relatively free algebras in a
variety which is not necessarily PI-proper. For example, let us generalize a cele-
brated theorem of Braun[11]-Kemer-Razmyslov:

Theorem 7.12. The Jacobson radical J of any relatively free affine algebra A is
nilpotent.

Proof. Modding out the T-radical, and applying Proposition 7.10, we may assume
that A is T-prime. If it is free, then J = 0, so we may assume that A is PI, where
we are done by Braun’s Theorem. �

Of course there is no hope to generalize this result to nonrelatively free algebras,
since the nilradical of an affine algebra need not be nilpotent.
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