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Let 

 

X

 

 and 

 

Y

 

 be Banach spaces, 

 

f

 

: 

 

X

 

 

 

→

 

 

 

R

 

 be a smooth
function, 

 

F

 

: 

 

X

 

 

 

→

 

 

 

Y

 

 be a smooth mapping, and 

 

Q

 

 

 

⊂

 

 

 

Y

 

 be
a closed convex set. Consider the minimization problem

 

(1)

 

Traditional studies of problem (1) are based on the
Lagrange principle. There is extensive literature con-
cerning first- and second-order necessary conditions for a
local extremum in problem (1) (see, e.g., [1, Chapter 3]).
However, in the majority of these studies (except for
several ones, which are discussed below), the local
solution  to problem (1) is assumed to satisfy the Rob-
inson regularity condition

 

(2)

 

where int denotes the interior of a set and im stands for
the image of a linear operator. In this case, we use the
Lagrangian

 

(3)

 

where 

 

x

 

 

 

∈

 

 

 

X

 

 and 

 

λ

 

 

 

∈

 

 

 

Y

 

*

 

. At the same time, in the irreg-
ular case, i.e., when (2) is violated, the necessary con-
ditions for an extremum that use the function 

 

L

 

 from (3)
are generally invalid.

When the relative interior of 

 

F

 

( ) + im

 

F

 

'( ) – 

 

Q

 

 is
nonempty (in particular, when 

 

Y

 

 is finite-dimensional),

f x( ) min,→

x D∈ F 1– Q( ) x X  F x( ) Q∈ ∈{ }.= =

x

0 int F x( ) imF' x( ) Q–+( ),∈

L x λ,( ) f x( ) λ F x( ),〈 〉 ,+=

x x

 

the irregular case can be formally covered by the
Lagrange principle if we introduce an additional multi-
plier 

 

λ

 

0

 

 

 

∈

 

 

 

R

 

 corresponding to the objective function
(see [1, Proposition 3.18]). However, this generaliza-
tion gives no additional information on the irregular sit-
uation, since the corresponding first-order necessary
condition is then automatically satisfied with 

 

λ

 

0

 

 = 0,
irrespective of 

 

f

 

 (see [1, Proposition 3.16]).

The following generalized Lagrangian of problem (1)
was introduced in [2, 3]:

 

(4)

 

where 

 

x

 

, 

 

h

 

 

 

∈

 

 

 

X

 

 and 

 

λ

 

1

 

, 

 

λ

 

2

 

 

 

∈

 

 

 

Y

 

*

 

 play the role of
Lagrange multipliers. By using this function, first- and
second-order necessary conditions for a local extre-
mum were obtained in the irregular case for a problem
with equality constraints (i.e., with 

 

Q

 

 = {0}). Here, 

 

h

 

 is
a parameter ranging over a set defined by the first and
second derivatives of 

 

F

 

 at . These constructions are
underlain by the concept of 2-regularity, and its relevant
generalization also plays a central role in this paper.
Similar ideas were used in [4, 5] for the case of inequal-
ity constraints (i.e., when 

 

Q

 

 is a cone with a nonempty
interior). However, the case of both equality and inequal-
ity constraints under violating Robinson condition (2)
has not been examined thus far. The goal of this paper
is to fill this gap. Note that, although problem (1) is con-
sidered in a very general setting, the results presented
below are meaningful for mathematical programming
problems (which correspond to the case of polyhedral 

 

Q

 

).

For any cone 
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⊂
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, let 

 

K
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denote its polar cone. For a given set 

 

S

 

 

 

⊂

 

 

 

X

 

, let 

 

S
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 =
{

 

l
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 X

 

*
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l
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〉
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X
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}

 

 denote its annihilator,

 

σ

 

(

 

l

 

, 

 

S

 

) = 

 

l

 

, 

 

x

 

〉

 

 denote the support function of this

set, and d

 

ist(

 

x

 

, 

 

S

 

) =

 

 

 

x – ξ|| is the distance from the

point x ∈ X to S. The radial cone for S at a point x ∈ S
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is defined by RS(x) = cone(S – x), the contingent cone is
defined as

and the normal cone is defined by the equality NS(x) =
(TS(x))° (if x ∉ S, then NS(x) =  by definition).

2-REGULARITY CONDITION
AND THE CONTINGENT CONE

In what follows, we assume that the mapping F is
twice Fréchet differentiable in the neighborhood of a
given point  ∈ D and its second derivative is Lipschitz
continuous in this neighborhood.

Definition 1. The mapping F is called 2-regular at 
with respect to Q in a direction h ∈ X if

(5)

Note that 2-regularity in the direction h = 0 coincides
with Robinson condition (2). Under the last condition, F
is 2-regular at  with respect to Q in any direction h ∈ X
(including h = 0), but the converse is not valid. On the
other hand, the concept of 2-regularity coincides with the
corresponding concept introduced in [2] for the case of
equality constraints (i.e., for Q = {0}).

The results stated below are based on the following
estimate lemma.

Lemma 1. Let F be 2-regular at  with respect to Q
in a direction h ∈ X.

Then there is c = c( , h) > 0 such that, for any  ∈ X
that is sufficiently close to h and for any sufficiently
small t > 0, we have the estimate

For a given linear continuous operator A: X → Y, a
point y ∈ Q, and an element d ∈ Y, we define the set

In particular, (y, d) = (y, d; 0) coincides with
the usual (external) second-order tangent set of Q at y ∈ Q
in the direction d ∈ Y as introduced in [1, Definition 3.28].

TS x( ) h X | tk{ }∃ R+\ 0{ } such⊂∈{=

that tk{ } 0, dist x tkh+ S,( )→ o tk( ) },=

x

x

0 int F x( ) imF ' x( )+(∈

F '' x( ) h,[[ ] F ' x( )( )+ 1– Q F x( )–( ) ] Q ).–

x

x

x h̃

dist x th̃+ D,( ) cdist F x th̃+( ) Q,( )
t

-----------------------------------------------.≤

TQ
2 y d; A,( ) w Y  tk{ }∃ R+\ 0{ },-⊂∈

⎩
⎨
⎧

=

xk{ } X  such that tk{ } 0, xk{ } 0,→ →⊂

dist y tkd tk Axk 1
2
---tk

2w+ + + Q,⎝ ⎠
⎛ ⎞ o tk

2( )=
⎭
⎬
⎫

.

TQ
2 TQ

2

It should be stressed that, if (y, d; A) ≠ , then we
necessarily have d ∈ TQ(y).

Define the sets

It is easy to verify that these sets are both cones. The
following result is derived from Lemma 1.

Theorem 1. It holds that

Theorem 1 was obtained in [2] in the case of equal-
ity constraints (i.e., for Q = {0}) and in [4, 5] for ine-
quality constraints, when Q is a cone with a nonempty
interior. Finally, in the case where Q is a cone and
F( ) = 0, Theorem 1 was derived in [6].

If Robinson condition (2) is satisfied, Theorem 1 is
reduced to the classical result on the tangent cone (see,
e.g., [1, Corollary 2.91]), which is expressed by the
equality

At the same time, Theorem 1 also makes sense if the
Robinson condition is violated.

FIRST-ORDER NECESSARY CONDITIONS

The necessary conditions for a local extremum
given in this section are first-order conditions in the
sense that they use only the first derivative of the objec-
tive function f. It is assumed that f is Fréchet differen-
tiable at . Theorem 1 immediately implies the follow-
ing direct first-order necessary condition: if  is a local
solution to problem (1), then

In the rest of this section, we present first-order neces-
sary conditions that are a further development of the
Lagrange principle to the irregular case. In particular,
they imply the direct condition.

The reduced critical cone of problem (1) at the point
 is defined as

Moreover, we define the cone

TQ
2

H2 x( ) h X  F '' x( ) h h,[ ]∈{=

TQ
2 F x( ),(  F ' x( )h; F ' x( ) ) },∈

H2 x( ) h H2 x( )  holds 5( )∈{ }= .

H2 x( ) TD x( ) H2 x( ).⊂ ⊂

x

TD x( ) h X  F' x( )h TQ F x( )( )∈ ∈{ }.=

x
x

f ' x( ) h,〈 〉 0 h∀ H2 x( ).∈≥

x

C2 x( ) h H2 x( )  f ' x( ) h,〈 〉 0≤∈{ }.=

C2 x( ) C2 x( ) H2 x( )∩=

=  h C2 x( )  holds 5( )∈{ }.
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Theorem 2. Let  be a local solution to problem (1).

Then, for any h ∈ ( ), there is a Lagrange mul-
tiplier λ2 = λ2(h) ∈ Y* such that

(6)

Here, F''( )[h] is the linear operator defined by the for-
mula F''( )[h]x = F''( )[h, x], x ∈ X.

Let the generalized Lagrangian of problem (1) be
defined by formula (4). It can be shown that, if the cone
RQ(F( )) is closed and there is a closed linear subspace
M of Y that satisfies

(7)

and such that (RQ(F( )))° + M⊥ is a weakly* closed
cone, then (6) is equivalent to the existence of λ1 =
λ1(h) ∈ Y* such that

(8)

(note that M is not involved in these conditions).
A subspace M with the required properties exists in

some important special cases. For example, if Y is
finite-dimensional and Q is polyhedral (the case of a
mathematical programming problem), then we can set
M = imF '( ). If Robinson condition (2) holds at ,
then we can set M = Y. However, the existence of such
a subspace cannot be guaranteed in the general case.
Therefore, the above argument does not imply the exist-
ence of λ1 ∈ Y* that satisfies (8). Moreover, it is not
known at present whether the existence of λ1 with the
indicated properties can be guaranteed in the general
case. At the same time, a somewhat weaker assertion
holds true.

Theorem 3. Let  be a local solution to problem (1).

Then, for any h ∈ ( ), there is a Lagrange mul-
tiplier λ2 = λ2(h) ∈ Y* such that, for any closed linear
subspace M of Y satisfying (7), there exists a Lagrange
multiplier λ1 = λ1(h; M) ∈ Y* such that

(9)

If Robinson condition (2) is fulfilled, then the sec-
ond and fourth conditions in (9) imply that λ2 = 0. Con-
sequently, Theorem 3 becomes a traditional first-order
necessary condition (see, e.g., [1, Theorem 3.9]). Spe-

x

C2 x

f ' x( )– F '' x( ) h[ ]( )*λ2– F ' x( )( ) 1– RQ F x( )( )( )( )°,∈

F ' x( )( )*λ2 0, λ2 NQ F x( )( ).∈=

x
x x

x

imF' x( ) M imF' x( )⊂ ⊂ RQ F x( )( )–

x

∂L2

∂x
-------- x h λ1 λ2, , ,( ) 0, F' x( )( )*λ2 0,==

λ1 NQ F x( )( ), λ2 NQ F x( )( )∈ ∈

x x

x

C2 x

∂L2

∂x
-------- x h λ1 λ2, , ,( ) 0,=

F' x( )( )*λ2 0, λ1 NQ F x( ) M+( )∩ F x( )( ),∈=

λ2 NQ F x( )( ).∈

cifically, if  is a local solution to problem (1), then
there exists λ ∈ Y* such that

(10)

where the Lagrangian L is defined by (3). At the same
time, the theorems stated in this section give meaning-
ful information on  even if the Robinson condition is
violated.

SECOND-ORDER NECESSARY CONDITIONS

This section deals with second-order necessary con-
ditions (i.e., conditions that use the second derivative of
f). It is assumed that f is twice Fréchet differentiable at

 and F is three times Fréchet differentiable at this
point.

For a given linear continuous operator A: X → Y, a
linear subspace M ⊆ Y, a point y ∈ Q, and elements d,
η ∈ Y, we define the set

and the set

(which is independent of the choice of η).

For every h ∈ X, define the set

The following direct second-order necessary condition
is valid: if  is a local solution to problem (1), then, for

any h ∈ ( ),

If Robinson condition (2) is satisfied, this result is
reduced to a well-known one (see, e.g., [1, Lemma 3.44]).
Now we proceed to the Lagrangian form of the second-
order necessary condition.

x

∂L
∂x
------ x λ,( ) 0, λ NQ F x( )( ),∈=

x

x

TQ
3 y d; A; M η,,( ) w1 w2,( ) η M+( ) Y |-×∈

⎩
⎨
⎧

=

tk{ }∃ R+\ 0{ }, xk{ } X  such that⊂ ⊂

tk{ } 0, xk{ } 0,→ →

dist y tkd
1
2
---tk

2w1 1
2
---tk

2Axk 1
3!
-----tk

3w2+ + + + Q,⎝ ⎠
⎛ ⎞ o tk

3( )=
⎭
⎬
⎫

,

TQ
3 y d; A,( ) TQ

3 y d; A; Y η, ,( )=

Ξ x h,( ) ξ X | x∃ X  such that∈ ∈{=

F ' x( )ξ F '' x( ) h h,[ ]+ F ' x( )x 3F '' x( ) h ξ,[ ]+,(

+ F ''' x( ) h h h, ,[ ] ) TQ
3 F x( ) F ' x( )h; F ' x( ),( )∈ }.

x

C2 x

f ' x( ) ξ,〈 〉 f '' x( ) h h,[ ] 0 ξ∀≥ Ξ x h,( ).∈+



DOKLADY MATHEMATICS      Vol. 73      No. 3      2006

NECESSARY CONDITIONS FOR AN EXTREMUM IN 2-REGULAR PROBLEMS 343

Theorem 4. Let  be a local solution to problem (1).
Then, for any closed linear subspace M of Y satisfy-

ing (7), for any h ∈ ( ), and any convex set

(11)

there exist Lagrange multipliers λ1 = λ1(h; M) ∈ Y* and
λ2 = λ2(h; M) ∈ Y* such that (9) holds and

(12)

Proposition 1. Let  be a local solution to prob-
lem (1). Assume that the cone RQ(F( )) is closed and
there is a closed linear subspace M of Y that satisfies (7)
and is such that the cone (RQ(F( )))° + M⊥ is weakly*
closed.

Then Theorem 4 holds with this M and condition (9)
can be replaced by (8).

In Robinson condition (2) is fulfilled, we can use
M = Y in Theorem 4 and the latter then becomes a tra-
ditional second-order necessary condition (see, e.g., [1,
Theorem 3.45]). Specifically, if  is a local solution to

problem (1), then, for any h ∈ ( ) and any convex set

T ⊂ (F( ), F'( )h), there is λ = λ1 = λ1(h) ∈ Y* such
that (10) holds and

(13)

Here,

is the critical cone of problem (1) at .
It is well known that the so-called σ-term in (13) is

always nonpositive (see [1, (3.109)]). The same holds

true for the σ-term in (12), at least for those λ1 ∈ Y* and
λ2 ∈ Y* for which (8) is satisfied (see Proposition 1).

Proposition 2. For any closed linear subspace M of Y
satisfying (7), any h ∈ ( ), any convex set � ⊂ T × Y
satisfying (11), and any λ1 ∈ Y* and λ2 ∈ Y* satisfy-
ing (8), we have the inequality

However, it should be noted that the σ-term in (12) is
responsible only for the “curvature” of Q near F( ).
Accordingly, this term can be dropped if Q is polyhe-
dral. Indeed, it is easy to verify that, in the latter case,

the set (F( ), F '( )h; M, F ''( )[h, h]) contains the
point (0, 0) and Theorem 4 can be applied when � =
{(0, 0)}.
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