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Let X and Y be Banach spaces, f: X — R be a smooth
function, F: X — Y be a smooth mapping, and Q — Y be
a closed convex set. Consider the minimization problem

f(x) — min,
xe D = F'(Q) = {xe X| F(x) e Q}.

Traditional studies of problem (1) are based on the
Lagrange principle. There is extensive literature con-
cerning first- and second-order necessary conditions for a
local extremum in problem (1) (see, e.g., [1, Chapter 3]).
However, in the majority of these studies (except for
several ones, which are discussed below), the local
solution X to problem (1) is assumed to satisfy the Rob-
inson regularity condition

0 e int(F(¥) +imF (¥) - Q), )

where int denotes the interior of a set and im stands for
the image of a linear operator. In this case, we use the
Lagrangian

L(x,}) = f(x)+ (A, F(x)), 3)

where x € X and A € Y*. At the same time, in the irreg-
ular case, i.e., when (2) is violated, the necessary con-
ditions for an extremum that use the function L from (3)
are generally invalid.

When the relative interior of F(X) + imF'(x)— Q is
nonempty (in particular, when Y is finite-dimensional),
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the irregular case can be formally covered by the
Lagrange principle if we introduce an additional multi-
plier A, € R corresponding to the objective function
(see [1, Proposition 3.18]). However, this generaliza-
tion gives no additional information on the irregular sit-
uation, since the corresponding first-order necessary
condition is then automatically satisfied with A, = 0,
irrespective of f (see [1, Proposition 3.16]).

The following generalized Lagrangian of problem (1)
was introduced in [2, 3]:

Ly(x, B, AL A% = f(x) + (A, F(x))

A @
+ (A7, F'(x)h),
where x, h € X and A, A? € Y* play the role of
Lagrange multipliers. By using this function, first- and
second-order necessary conditions for a local extre-
mum were obtained in the irregular case for a problem
with equality constraints (i.e., with Q = {0}). Here, A is
a parameter ranging over a set defined by the first and
second derivatives of F at X. These constructions are
underlain by the concept of 2-regularity, and its relevant
generalization also plays a central role in this paper.
Similar ideas were used in [4, 5] for the case of inequal-
ity constraints (i.e., when Q is a cone with a nonempty
interior). However, the case of both equality and inequal-
ity constraints under violating Robinson condition (2)
has not been examined thus far. The goal of this paper
is to fill this gap. Note that, although problem (1) is con-
sidered in a very general setting, the results presented
below are meaningful for mathematical programming
problems (which correspond to the case of polyhedral Q).

For any cone K C X, let K° = {l € X*|{[,E)<0VE e
K} denote its polar cone. For a given set S X, let S+ =
{l € X*| {l, x) =0 VX € S} denote its annihilator,

6(l, S) = sup(l, x) denote the support function of this
xesS
set, and dist(x, S) = inf || x — &|| is the distance from the
Ee S

point x € X to S. The radial cone for $ at a point x € S
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is defined by R(x) = cone(S — x), the contingent cone is
defined as

Ty(x) = {he X|] 3{t,} cR\0} such
that {#,} >0, dist(x+2,h S) = o(t,)},

and the normal cone is defined by the equality Ny(x) =
(Ts(x))° (if x ¢ S, then Ny(x) = @ by definition).

2-REGULARITY CONDITION
AND THE CONTINGENT CONE

In what follows, we assume that the mapping F' is
twice Fréchet differentiable in the neighborhood of a
given point X € D and its second derivative is Lipschitz
continuous in this neighborhood.

Definition 1. The mapping F is called 2-regular at X
with respect to Q in a direction & € X if

Oe int(F(x)+imF'(x)
+ F'(H[[A)(F'(X)(Q-FE)1-0). (5

Note that 2-regularity in the direction / = 0 coincides
with Robinson condition (2). Under the last condition, F
is 2-regular at x with respect to Q in any direction 1 € X
(including h = 0), but the converse is not valid. On the
other hand, the concept of 2-regularity coincides with the
corresponding concept introduced in [2] for the case of
equality constraints (i.e., for O = {0}).

The results stated below are based on the following
estimate lemma.

Lemma 1. Let F be 2-regular at x with respect to Q
in a direction h € X.

Then there is c = c(x , h) > 0 such that, for any heX

that is sufficiently close to h and for any sufficiently
small t > 0, we have the estimate

cdist(F(X + th), Q)

dist(x + th, D) < -

For a given linear continuous operator A: X — Y, a
point y € (O, and an element d € Y, we define the set

To(y,d; A) = {we Y| 3{7,} c R\{0},

{x*} X such that {£,} >0, {x"} >0,

dist(y +1,d+1,Ax" + %tiw, Q) = o(t}) }

In particular, T (y, d) = Tg (y, d; 0) coincides with
the usual (external) second-order tangent setof Q aty e Q
in the direction d € Y as introduced in [1, Definition 3.28].
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It should be stressed that, if TZQ (v, d; A) # @, then we
necessarily have d € Ty(y).

Define the sets
Hy(X) = {he X| F"(%)[h, h]
e Ty(F(%), F'(¥)h; F'(X)) 1},

Hy(%) = {h e H,(%)| holds (5)}.

It is easy to verify that these sets are both cones. The
following result is derived from Lemma 1.

Theorem 1. It holds that
Hy(X) c Tp(X) c Hy(X).

Theorem 1 was obtained in [2] in the case of equal-
ity constraints (i.e., for Q = {0}) and in [4, 5] for ine-
quality constraints, when Q is a cone with a nonempty
interior. Finally, in the case where Q is a cone and

F(x) =0, Theorem 1 was derived in [6].
If Robinson condition (2) is satisfied, Theorem 1 is
reduced to the classical result on the tangent cone (see,

e.g., [1, Corollary 2.91]), which is expressed by the
equality

Tp(X) = {he X| F(X)he Ty(F(X))}.

At the same time, Theorem 1 also makes sense if the
Robinson condition is violated.

FIRST-ORDER NECESSARY CONDITIONS

The necessary conditions for a local extremum
given in this section are first-order conditions in the
sense that they use only the first derivative of the objec-
tive function f. It is assumed that f'is Fréchet differen-

tiable at x . Theorem 1 immediately implies the follow-

ing direct first-order necessary condition: if x is a local
solution to problem (1), then

(f'(X), h) 20 Vh e H,(x).

In the rest of this section, we present first-order neces-
sary conditions that are a further development of the
Lagrange principle to the irregular case. In particular,
they imply the direct condition.

The reduced critical cone of problem (1) at the point
X is defined as

Cy(%) = {he Hy(X)| (f'(%), ) <0}.
Moreover, we define the cone

Cy(%) = Co(X) N Hy(X)
= {he Cy(X)| holds (5)}.
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Theorem 2. Let X be a local solution to problem (1).

Then, for any h € C,(X), there is a Lagrange mul-
tiplier \*> = A*(h) € Y* such that

— (&) = (F" (D[R *A e ((F'()_C))il(RQ(F()_C))))Oe
(F'(2)*A* = 0, A e Ny(F(%)). ©)

Here, F"'(x)[h] is the linear operator defined by the for-
mula F"'(X)[h]x = F"'(X)[h, x], x € X.

Let the generalized Lagrangian of problem (1) be
defined by formula (4). It can be shown that, if the cone

Ry(F(x)) is closed and there is a closed linear subspace
M of Y that satisfies

imF (¥) € M cimF'(X) - Ry(F(%)) 7)

and such that (Ry(F(x)))° + M+ is a weakly* closed
cone, then (6) is equivalent to the existence of A! =
Al(h) € Y* such that

a—Lz(fc, LAY =0, (F(X)*A* =0,
ox (8)

A e Nop(F(3)), A e No(F(%))

(note that M is not involved in these conditions).

A subspace M with the required properties exists in
some important special cases. For example, if Y is
finite-dimensional and Q is polyhedral (the case of a
mathematical programming problem), then we can set
M = imF'(x). If Robinson condition (2) holds at X,
then we can set M = Y. However, the existence of such
a subspace cannot be guaranteed in the general case.
Therefore, the above argument does not imply the exist-
ence of A € Y* that satisfies (8). Moreover, it is not
known at present whether the existence of A! with the
indicated properties can be guaranteed in the general
case. At the same time, a somewhat weaker assertion
holds true.

Theorem 3. Let X be a local solution to problem (1).

Then, for any h € C,(X), there is a Lagrange mul-

tiplier A> = AM*(h) € Y* such that, for any closed linear
subspace M of Y satisfying (7), there exists a Lagrange
multiplier M' = A'(h; M) € Y* such that

dL, _ La2y _
a_x(xyhaka}\‘)_oa
(F(X)*AX =0, A€ Nonpmem(F(), (9

AP e No(F(X)).

If Robinson condition (2) is fulfilled, then the sec-
ond and fourth conditions in (9) imply that A? = 0. Con-
sequently, Theorem 3 becomes a traditional first-order
necessary condition (see, e.g., [1, Theorem 3.9]). Spe-
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cifically, if X is a local solution to problem (1), then
there exists A € Y* such that

3_’;(;, M) =0, he Ny(F(®)). (10)

where the Lagrangian L is defined by (3). At the same
time, the theorems stated in this section give meaning-

ful information on x even if the Robinson condition is
violated.

SECOND-ORDER NECESSARY CONDITIONS

This section deals with second-order necessary con-
ditions (i.e., conditions that use the second derivative of
. It is assumed that f'is twice Fréchet differentiable at

X and F is three times Fréchet differentiable at this
point.

For a given linear continuous operator A: X — Y, a
linear subspace M C Y, a point y € Q, and elements d,
1M € Y, we define the set

To(y, d; A; M, M) = {(wi wh)e (n+M)xY|

3{t,} c R\NOY, {x*} < X such that

{11 —>0, {x'}—>0,
1

dist(y +1d+ ltiw1 + >

5 rAX" + lt,iwz, Q) =o(t)) }

3!

and the set
To(y,d; A) = Ty(y, d; A; Y, M)

(which is independent of the choice of 1).
For every h € X, define the set

E(x, h) = {§ € X| Ix € X such that
(F'(¥)E+ F"(X)[h, h], F'(¥)x +3F"(x)[h, E]

+ F"(x)[h, h,h]) € T3Q(F(5c), F'(X)h; F'(x))}.
The following direct second-order necessary condition
is valid: if X is a local solution to problem (1), then, for
any h Cr (%),

(f'(%),8) + f'(3)[h, h] 20 VE e E(X, h).

If Robinson condition (2) is satisfied, this result is
reduced to a well-known one (see, e.g., [1, Lemma 3.44]).
Now we proceed to the Lagrangian form of the second-
order necessary condition.
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Theorem 4. Let X be a local solution to problem (1).
Then, for any closed linear subspace M of Y satisfy-
ing (1), for any h € C,(X), and any convex set

Jc T3Q(F(5c), F'(xX)h; F'(x); M, F'(X)[h, h]), (11)

there exist Lagrange multipliers A' = M\(h; M) € Y* and
A = AX(h; M) € Y* such that (9) holds and

o’L,
2

(x, hA, 17&)[};, hl-o((M, A%, T)=0. (12)
ox 3

Proposition 1. Let x be a local solution to prob-
lem (1). Assume that the cone Ry(F(X)) is closed and
there is a closed linear subspace M of Y that satisfies (7)
and is such that the cone (Ry(F(x)))° + Mt is weakly*
closed.

Then Theorem 4 holds with this M and condition (9)
can be replaced by (8).

In Robinson condition (2) is fulfilled, we can use
M =Y in Theorem 4 and the latter then becomes a tra-
ditional second-order necessary condition (see, e.g., [1,

Theorem 3.45]). Specifically, if X is a local solution to
problem (1), then, for any h e C(x)and any convex set
T Ty (F(%), F'(%)h), there is A=Al = A!(h) € Y* such
that (10) holds and

9’L

;(;C, M[h, h]—c(X, T)=0. (13)
X

Here,
C(x) = {he (F‘()_C))il(TQ(F()_C))” (f'(x), h) <0}

is the critical cone of problem (1) at x.

It is well known that the so-called G-term in (13) is
always nonpositive (see [1, (3.109)]). The same holds

DOKLADY MATHEMATICS  Vol. 73  No. 3 2006

343

true for the 6-term in (12), at least for those A! € Y* and
A? € Y* for which (8) is satisfied (see Proposition 1).

Proposition 2. For any closed linear subspace M of Y
satisfying (7), any he C, (%), any convex set T c Tx Y
satisfying (11), and any ' € Y* and \*> € Y* satisfy-
ing (8), we have the inequality

(M, A%, T) <o.

However, it should be noted that the o-term in (12) is
responsible only for the “curvature” of Q near F(X).

Accordingly, this term can be dropped if Q is polyhe-
dral. Indeed, it is easy to verify that, in the latter case,

the set Tz) (F(x), F'(x)h; M, F"(x)[h, h]) contains the

point (0, 0) and Theorem 4 can be applied when J =
{(0, 0)}.
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