УДК 666.3.022:542.65:546.41'33'18

ПОРОШКОВЫЕ СМЕСИ НА ОСНОВЕ ГИДРОКСИАПАТИТА КАЛЬЦИЯ И СОЛЕЙ НАТРИЯ^{*}

Т.В. САФРОНОВА, канд. техн. наук, В.И. ПУТЛЯЕВ, канд. хим. наук, А.В. КНОТЬКО, д-р хим. наук, Я.Ю. ФИЛИППОВ, канд. хим. наук, Е.С. КЛИМАШИНА, канд. хим. наук, А.П. РЫЖОВ, Б.М. САИДЖОНОВ

Московский государственный университет имени М.В. Ломоносова, e-mail: t3470641@yandex.ru

Порошковые смеси на основе гидроксиапатита кальция (ГАП) и солей натрия в количестве, соответствующем 25% (мол.) Na_2O в системе Na_2O —CaO— P_2O_5 , были исследованы методом изотермических выдержек в интервале 600—1200 °C. По данным РФА фазовый состав образцов ГАП/ Na_2CO_3 после обжига включал ГАП, β -CaNaPO₄ и CaO. Фазовый состав образцов керамики из порошковой смеси ГАП/ Na_2HPO_4 после обжига содержал фазы β -CaNaPO₄ и $Na_4P_2O_7$. Фазовый состав образцов состав образцов керамики из порошковой смеси ГАП/ Na_2HPO_4 после обжига содержал фазы β -CaNaPO₄ и $Na_4P_2O_7$. Фазовый состав образцов керамики из порошковой смеси ГАП/ Na_2PO_4 после обжига содержал $Ca_2P_2O_7$, $Ca_{10}Na(PO_4)_7$, β -CaNaPO₄, $CaNa_2P_2O_7$ и $Na_4P_2O_7$. Присутствие солей натрия в количестве, соответствующем 25% (мол.) Na_2O в системе Na_2O —CaO— P_2O_5 , обеспечивало протекание жидкофазного спекания в компактных заготовках из исследованных порошковых смесей. Однако присутствие водорастворимой соли $Na_4P_2O_7$ в керамических образцах ГАП/ Na_2HPO_4 и ГАП/ NaH_2PO_4 после обжига наких материалов в соприкосновении с водной средой. А присутствие CaO в образцах ГАП/ Na_2CO_3 исключает применение таких материалов в качестве костных имплантатов.

Ключевые слова: биокерамика, гидроксиапатит, карбонат натрия, гидрофосфат натрия, дигидрофосфат натрия, трикальцийфосфат, ренанит, двойной пирофосфат натрия кальция, пирофосфат натрия, Na-замещенный трикальцийфосфат.

Введение

о ерамические материалы на основе фосфатов кальция необходимы для создания костных имплантатов [1]. Для изготовления керамических материалов используют порошковые системы (порошковые смеси, суспензии) [2]. Состав порошковых смесей ограничен химическим составом неорганической составляющей костной ткани, которая помимо карбонатгидроксиапатита, включает ионы Na, К, Mg, Si, Cl, F и другие [3, 4]. Поэтому для проектирования фазового состава керамических материалов для костных имплантатов и выбора технологической стратегии чаще всего используют следующие фазовые диаграммы: СаО- P_2O_5 , $CaO - P_2O_5 - CO_3$, $Na_2O-CaO-P_2O_5$, $MgO-CaO-P_2O_5$, $K_2O-CaO-P_2O_5$, CaO- $SiO_2 - P_2O_5$, $Na_2O - CaO - SiO_2 - P_2O_5$ [5].

Регенеративные методы лечения, предполагающие активное взаимодействие имплантата и костной ткани пациента, используют пористые матрицы из биорезорбируемых материалов [6]. Список резорбируемых фаз включает: Ca₃(PO₄)₂, Ca₂P₂O₇, Ca(PO₃)₂, Ca₁₀Na(PO₄)₇, Ca₁₀K(PO₄)₇, CaNaPO₄, CaKPO₄, аморфные фазы в указанных выше системах и другие кристаллические фазы [7].

Технологические стратегии получения керамических материалов, направленные на экономию энергии при обжиге и использование доступного термического оборудования, используют жидкофазное спекание и химические методы получения активных порошков. Поиск спекающих добавок, формирующих при обжиге биосовместимые биорезорбируемые фазы, является актуальной задачей.

Доля натрия в составе костной ткани достаточна велика. Поэтому соли натрия или натрий-кальций-фосфатные стекла используют в качестве спекающих добавок при получении керамических материалов на основе фосфатов

^{*} Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского университета. Проведенные исследования поддержаны грантами РФФИ 16-08-01172, 16-53-00154, 15-03-09387, 15-38-70047, офи-15-29-04871.

кальция. Фосфаты щелочных металлов были использованы в качестве спекающих добавок при получении керамики на основе гидроксиапатита (ГАП) в количестве 5% (мас.) [8], а стекла в системе Na₂O—CaO—P₂O₅ в количестве 2,5% (мас.) [9].

Добавки солей натрия или измельченных стекол в системе $Na_2O-CaO-P_2O_5$ в порошковые системы на основе фосфатов кальция при получении керамики позволяют снизить температуру обжига, перевести спекание в жидкофазный режим, создают условия для образования биосовместимых биорезорбируемых фаз, таких как Naзамещенный трикальцийфосфат или ренанит.

Цель данной работы состояла в изучении свойств порошковых смесей, включающих ГАП и различные соли натрия (Na₂CO₃, Na₂HPO₄, NaH₂PO₄). При нагревании данные соли трансформируются в Na₂O, Na₄P₂O₇, NaPO₃ соответственно. Соли были взяты в количествах, обеспечивающих содержание Na₂O в системе Na₂O—CaO—P₂O₅, соответствующее 25% (мол.). Исследование порошковых смесей на основе ГАП, содержащих значительное количество солей натрия, позволит получить информацию о процессах, происходящих при получении керамических материалов в системе Na₂O—CaO—P₂O₅.

Экспериментальная часть

Порошковые смеси готовили из гидроксиапатита $Ca_{10}(PO_4)_6(OH)_2$ (Riedel-deHaen, Sigma-Aldrich Laborchemikalien, 04238, lot 70080, Германия) и солей натрия: Na_2CO_3 (ГОСТ 83—79, квалификация х.ч., Лабтех, Россия), $Na_2HPO_4.12H_2O$ (ГОСТ 4172—76, квалификация х.ч., Лабтех, Россия), $NaH_2PO_4.2H_2O$ (ГОСТ 4328—77, квалификация х.ч., Лабтех, Россия). При подготовке исходных смесей Na_2CO_3 был использован в качестве прекурсора Na_2O ; $Na_2HPO_4.12H_2O$ был использован в качестве прекурсора $Na_4P_2O_7$, $NaH_2PO_4.2H_2O$ был использован в качестве прекурсора $NaPO_3$ (таблица)

Исследуемые составы обозначены на фазовой диаграмме (рис. 1) пересече-

диаграмме (рис. 1) пересечением линии 25% (мол.) Na₂O и линий ГАП—Na₂O, ГАП— N₂P (Na₄P₂O₇), ГАП—NP (NaPO₃). Маркировка порошковых смесей и образцов после обжига представлена в таблице. Порошки исходных компонентов (ГАП, Na₂CO₃, NaH₂PO₄·2H₂O, Na₂HPO₄·12H₂O) измельчали в ацетоне в шаровой мельнице в течение 15 мин при скорости 7000 об/мин. Соотношение ацетон: порошок: шары составляло 1:1:5 соответственно. Порошки после измельчения в шаровой мельнице сушили при температуре 20 °C в течение 2 ч, затем пропускали через сито с размером ячеек 200 мкм.

Для подготовки исследуемых смесей высушенные после дезагрегации и помола порошки ГАП и солей натрия смешивали в заданном соотношении, пропуская взятую пару компонентов 4-кратно через сито. Измельченные соли натрия (Na₂CO₃, Na₂HPO₄·12H₂O, NaH₂PO₄·2H₂O) и ГАП брали в количестве, соответствующем 25% (мол.) Na₂O для фазовой диаграммы Na₂O— CaO—P₂O₅.

Фазовый состав, плотность и усадку после обжига при заданной температуре в интервале 600—1200 °С исследовали на компактных порошковых образцах. В качестве временного технологического связующего (ВТС) исполь-

Рис. 1. Исследуемые составы модельных порошковых смесей, включающих ГАП и соли натрия (Na_2CO_3 , Na_2HPO_4 ·12H₂O, NaH_2PO_4 ·2H₂O) при содержании Na_2O —25% (мол.), нанесены (\star) на фазовую диаграмму из базы ACerS NIST Phase Equilibrium Diagrams Data base, 2004 г (рис. 06587 (700— 1050 °C))

Маркировка	И	состав	исследуемых	порошковых	смесей
------------	---	--------	-------------	------------	--------

Nº	Маркировка	Компоненты порошковых смесей				
		$Ca_{10}(PO_4)_6(OH)_2$	Na ₂ CO ₃	Na ₂ HPO ₄ ·12H ₂ O	NaH ₂ PO ₄ ·2H ₂ O	
1	ГАП	+	—	_	_	
2	ГАП/Na ₂ CO ₃	+	+	_	—	
3	$\Gamma A\Pi / Na_2 HPO_4$	+	_	+	_	
4	$\Gamma A\Pi / NaH_2PO_4$	+		—	+	

зовали парафин, который вводили в порошковую смесь в виде раствора в CCl₄. Порошок, содержащий BTC, протирали через сито с размером ячеек 1 мм. На ручном прессе из гранулированного порошка, содержащего BTC, изготавливали образцы в форме дисков диаметром 12 и высотой 1,5—2 мм при удельном давлении прессования 50 МПа. Обжиг образцов проводили со скоростью нагрева 5 °C/мин и выдержкой при конечной температуре в течение 2 ч.

Рентгенофазовый анализ (РФА) образцов после термообработки проводили на дифрактометре Rigaku D/Max-2500 с вращающимся анодом (Япония). Для проведения качественного определения фаз использовали базу данных ICDD PDF2 [10]. Съемку вели в режиме на отражение с использованием Cu K_{α} -излучения (интервал углов 2 θ = 2—60° с шагом по 0,02°, скорость регистрации спектров 5°/мин).

Микроструктуру образцов после термообработки исследовали методом растровой электронной микроскопии (РЭМ) на растровом электронном микроскопе LEO SUPRA 50VP (Carl Zeiss, Германия; автоэмиссионный источник); съемку осуществляли в режиме низкого вакуума при ускоряющем напряжении 20 кВ (детектор вторичных электронов VPSE) и при напряжениях 3—20 кВ (детектор SE2).

Результаты и их обсуждение

Данные РФА компактных заготовок из исследуемых порошковых смесей после обжига при 900 °С представлены на рис. 2.

По данным РФА фазовый состав образцов ГАП после обжига в интервале 600—1200 °С не изменялся и соответствовал карточке PDF № 9—432.

Содержание СаО в Са₃(PO₄)₂ (на диаграмме обозначена C_3P) составляет 75% (мол.). Синтетическому гидроксиапатиту Са₁₀(PO₄)₆(OH)₂ соответствует содержание 77% (мол.) СаО. Следовательно, точка, соответствующая ГАП, на фазовой диаграмме лежит на линии СаО $-P_2O_5$ и находится в треугольнике, образованном СаО $-Ca_3(PO_4)_2-Ca_5Na_2(PO_4)_4$.

Поскольку диффузионная подвижность катионов Na достаточно высока при температурах, использованных при обжиге, то взаимодействие ГАП и солей натрия можно представить как в значительной мере одностороннюю диффузию ионов Na из соответствующей натриевой соли в частицы или кристаллиты ГАП. Взаимодействие в рассматриваемых порошко-

Рис. 2. Данные РФА после обжига при 900°С для образцов керамики, изготовленной из ГАП и порошковых смесей «ГАП/Na₂CO₃», «ГАП/Na₂HPO₄», «ГАП/NaH₂PO₄» при Na₂O = 25% (мол.)

* — ГАП (карточка PDF № 9—432); β — β -СаNаPO₄ (карточка PDF № 29—1193); o — СаО (карточка PDF № 37—1497); n — Na₄P₂O₇ (карточка PDF № 10—187); c — β -Са₂P₂O₇ (карточка PDF № 9—346); t — Са₁₀Na(PO₄)₇ (карточка PDF № 45—339); p — СаNа₂P₂O₇ (карточка PDF № 48—557)

вых смесях («ГАП/Na₂CO₃», «ГАП/Na₂HPO₄» и «ГАП/NaH₂PO₄») можно описать как движение фигуративной точки на фазовой диаграмме от состава, соответствующего ГАП, вдоль линий к Na₂O, Na₄P₂O₇(N₂P) или к NaPO₃(NP).

Для порошковой смеси «ГАП/Na₂CO₃» фигуративная точка движется, последовательно пересекая треугольники CaO—Ca₃(PO₄)₂— Ca₅Na₂(PO₄)₄, CaO—Ca₅Na₂(PO₄)₄—CaNaPO₄, с остановкой в точке пересечения линии ГАП— Na₂O с линией 25% Na₂O в треугольнике CaO— CaNaPO₄—Na₃PO₄.

Поданным РФА фазовый состав ГАП/Na₂CO₃ после обжига при 600 °C был представлен гидроксиапатитом Ca₁₀(PO₄)₆(OH)₂ (карточка PDF № 9—432). Фазовый состав ГАП/Na₂CO₃ после обжига в интервале 700—1200 °C был представлен гидроксиапатитом Ca₁₀(PO₄)₆(OH)₂ (карточка PDF № 9—432), ренанитом β-CaNaPO₄ (карточка PDF № 29—1193) и оксидом кальция CaO (карточка PDF № 37—1497). Интенсивность пиков ренанита и оксида кальция с ростом температуры возрастала.

Процесс, протекающий при нагревании в порошковой смеси ГАП/Na₂CO₃ может быть отражен реакцией (1):

$$Ca_{10}(PO_4)_6(OH)_2 + 3Na_2CO_3 =$$

= 6CaNaPO_4 + 4CaO + H_2O + 3CO_2. (1)

При нагревании использованный в качестве компонента порошковой смеси ГАП/Na₂HPO₄ гидратированнный двузамещенный ортофосфат натрия Na₂HPO₄·12H₂O преобразуется последовательно в Na₂HPO₄, а затем в Na₄P₂O₇. Для порошковой смеси ГАП/Na₂HPO₄ фигуративная точка движется, из треугольника CaO—Ca₃(PO₄)₂—Ca₅Na₂(PO₄)₄ через Ca₃(PO₄)₂— Ca₂P₂O₇—CaNaPO₄, с остановкой в точке пересечения линии ГАП—Na₄P₂O₇ с линией 25% Na₂O в треугольнике CaNaPO₄—Ca₂P₂O₇—Na₄P₂O₇.

Фазовый состав образцов керамики из порошковой смеси ГАП/Na₂HPO₄ после обжига в интервале 600—900 °С включал ренанит β -CaNaPO₄ (карточка PDF № 29—1193) и Na₄P₂O₇ (карточка PDF № 10—187), а после обжига при 1000 °С фазовый состав образца по данным РФА включал ренанит β -CaNaPO₄ (карточка PDF № 29—1193) и рентгено-аморф-ную фазу.

Предположительно протекают реакции:

$$Ca_{10}(PO_4)_6(OH)_2 + Na_4P_2O_7 =$$

= 2Ca_5Na_2(PO_4)_4 + H_2O. (2)
2Ca_5Na_2(PO_4)_4 + Na_4P_2O_7 =
= 8CaNaPO_4 + Ca_2P_2O_7. (3)

При нагревании использованный в качестве компонента порошковой смеси ГАП/NaH₂PO₄ гидратированнный однозамешенный ортофосфат натрия NaH₂PO₄·2H₂O преобразуется в NaH₂PO₄, а затем в NaPO₃. Для порошковой смеси «ГАП/NaH₂PO₄» фигуративная точка движется, из треугольника CaO-Ca₃(PO₄)₂-Ca₅Na₂(PO₄)₄ через тре- $Ca_3(PO_4)_2 - Ca_2P_2O_7 - CaNaPO_4$, угольники $CaNaPO_4 - Ca_2P_2O_7 - Na_4P_2O_7$ с останов-И кой в точке пересечения линии ГАП-NaPO3 с линией 25% Na_2O в треугольнике $Ca_2P_2O_7$ — $Ca(PO_3)_2$ - $CaNa_2P_2O_7$.

Фазовый состав образцов керамики из порошковой смеси «ГАП/NaH₂PO₄» после обжига в интервале 600—1000 °С содержал Naзамещенный ТКФ Са₁₀Na(PO₄)₇ (карточка PDF № 45—339), ренанит β-CaNaPO₄ (карточка PDF № 29—1193), пирофосфат натрия Na₄P₂O₇ (карточка PDF № 29—1193), пирофосфат натрия Na₄P₂O₇ (карточка PDF № 10—187), двойной пирофосфат Na/Ca CaNa₂P₂O₇ (карточка PDF № 48—557), ПФК β-Ca₂P₂O₇ (карточка PDF № 9—346). Взаимодействие, протекающее в порошковой заготовке при нагревании, может быть отражено реакций (4):

$$Ca_{10}(PO_4)_6(OH)_2 + NaPO_3 \rightarrow$$

$$\rightarrow CaNaPO_4 + Ca_2P_2O_7 + CaNa_2P_2O_7 + H_2O. (4)$$

Взаимодействие между компонентами смесей ГАП/Na₂CO₃, ГАП/Na₂HPO₄ и ГАП/NaH₂PO₄ обуславливает формирование фазового состава керамики при нагревании.

Керамика с фазовым составом, который включает растворимую в воде соль Na₄P₂O₇ (используется в растворных синтезах), не может быть рекомендована в качестве материала, предназначенного для использования в соприкосновении с водными средами. Прекурсоры фаз $Na_4P_2O_7$ или NaPO₃, такие как Na₂HPO₄·12H₂O, Na₄P₂O₇·10H₂O, NaH₂PO₄·2H₂O, для создания биосовместимых и биорезорбируемых материалов могут быть использованы при подготовке исходных порошковых смесей. Однако они должны быть взяты в таких количествах, которые бы исключали формирование быстро растворимых соединений, таких как пирофосфат натрия Na₄P₂O₇. При этом актуальным остается создание керамических многофазных композитов, включающих склонные к постепенному растворению фазы Na-замещенного ТКФ Са₁₀Na(PO₄)₇ или Са₅Na₂(PO₄)₄, ПФК Са₂P₂O₇, двойного пирофосфата Na/Ca CaNa₂ P_2O_7 , ренанита CaNaPO₄. Подобные фазы, как было показано, могут быть сформированы в результате гетерогенных реакций, протекающих при нагревании порошковых смесей, включающих ГАП и гидратированные кислые фосфаты натрия.

Зависимости усадки и плотности образцов после обжига от температуры представлены на рис. 3. Усадка и плотность образцов ГАП увеличиваются с ростом температуры обжига и достигают максимальных значений после обжига при 1200 °С — 18,0% и 1,9 г/см³ соответственно.

Усадка и плотность образцов ГАП/Na₂CO₃ также увеличиваются с ростом температуры обжига и достигают максимальных значений после обжига при 1200 °C — 28,6% и 2,26 г/см³. Большие значения для усадки по диаметру и плотности связаны, по всей видимости, с образованием расплава в системе Na₂O-CaO-P₂O₅ при обжиге. Микрофотографии керамики ГАП и ГАП/Na₂CO₃ (рис. 4) подтверждают это предположение, поскольку размер зерен в керамике ГАП/Na₂CO₃ (1-4 мкм) больше размера зерен в керамике ГАП (до 1 мкм). Оба материала относительно истинной плотности ГАП (3,16 г/см³) имеют низкую относительную плотность: 61% ГАП и 72% ГАП/Na₂CO₃. При этом микроструктуру ГАП/Na₂CO₃ нельзя считать однородной.

Рис. 3. Зависимости линейной усадки (*a*) и плотности (*б*) образцов, изготовленных из порошковых смесей ГАП и солей натрия (Na₂O – 25% (мол.), от температуры

После обжига при 1100 °С образцы из порошковых смесей ГАП/Na₂HPO₄ и ГАП/NaH₂PO₄ расплавились. Кривые, отражающие изменение геометрических размеров образцов из порошковых смесей ГАП/Na₂HPO₄ и ГАП/NaH₂PO₄, имеют немонотонный характер. До 850 °С ГАП/NaH₂PO₄ и до 900 °С ГАП/Na₂HPO₄ усадка образцов по диаметру нарастает достигая 32,7 и 25,7% соответственно. Плотность при этом была достигнута 2,25 г/см³ для образцов ГАП/NaH₂PO₄ и 2,40 г/см³ — для образцов ГАП/Na₂HPO₄. Выше 800 °С усадка по диметру для ГАП/Na₂HPO₄ практически не меняется (26,4—25,7%), а плотность достигнув максимума при 900 °С при дальнейшем нагревании снижается. Плотность ГАП/NaH₂PO₄ снижается после обжига при температурах выше 800 °С. Присутствие расплава в системе Na₂O-CaO-Р₂О₅ может объяснить уплотнение, за которым следует расширение образцов, обусловленное, по всей видимости, вскипанием низкотемпературного расплава.

Рис. 4. Микрофотографии сколов керамики, полученной из порошка ГАП (*a*) и из порошковой смеси «ГАП/Na₂CO₃» (*б*) после обжига при 1100 °C

Микрофотографии образцов керамики из порошковых смесей ГАП/Na₂HPO₄ и ГАП/NaH₂PO₄ после обжига при 900 °С показаны на рис. 5. Наблюдаемая пористость согласуется с данными о зависимости плотности от температуры обжига. Размер зерен можно оценить как 5—15 мкм для керамики ГАП/Na₂HPO₄ и как 2—5 мкм для керамики ГАП/NaH₂PO₄.

Выводы

В работе были исследованы порошковые смеси на основе ГАП и солей натрия (карбоната натрия, гидрофосфата натрия и дигидрофосфата натрия), взятые в количестве, соответствующем 25% (мол.) Na₂O в системе Na₂O— CaO—P₂O₅. Фазовый состав образцов на основе порошка ГАП после обжига в интервале 600— 1200 °C не менялся. Фазовый состав образ-

(*a*) ГАП/Na₂HPO₄ — 900 °С

(б) ГАП/NaH₂PO₄ — 900 °С

Рис. 5. Микрофотографии сколов керамики, полученной из порошковых смесей «ГАП/Na₂HPO₄» (*a*) и «ГАП/NaH₂PO₄» (*б*) после обжига при 900 °C

цов ГАП/Na₂CO₃ после обжига включал ГАП, β -CaNaPO₄ и CaO. Фазовый состав образцов керамики из порошковой смеси ГАП/Na₂HPO₄ после обжига содержал фазы β -CaNaPO₄ и Na₄P₂O₇. Фазовый состав образцов керамики из порошковой смеси ГАП/NaH₂PO₄ после обжига содержал Ca₂P₂O₇, Ca₁₀Na(PO₄)₇, β -CaNaPO₄, CaNa₂P₂O₇ и Na₄P₂O₇. Присутствие солей натрия в количестве, соответствующем 25% (мол.) Na₂O в системе Na₂O—CaO—P₂O₅, обеспечивало протекание жидкофазного спекания в компактных заготовках из исследованных порошковых смесей. Однако присутствие водорастворимой соли Na₄P₂O₇ в керамических образцах ГАП/Na₂HPO₄ и ГАП/NaH₂PO₄ после обжига накладывает ограничение на использование таких материалов в соприкосновении с водной средой, а присутствие СаО в образцах ГАП/Na₂CO₃ исключает применение таких материалов в качестве костных имплантатов.

СПИСОК ЛИТЕРАТУРЫ

1. **Barinov S.M.** Calcium phosphate-based ceramic and composite materials for medicine // Russian Chemical Reviews, 2010. V. 79. No 1. P. 13–30.

2. **Safronova T.V., Putlyaev V.I.** Powder systems for calcium phosphate ceramics // Inorganic Materials. 2017. V. 53. No 1. P. 17–26.

3. Данильченко С.Н. Структура и свойства апатитов кальция с точки зрения биоминералогии и биоматериаловедения (обзор) // Вісник СумДУ. Серія Фізика, математика, механіка. 2007. № 2. С. 33—59.

4. Герк С.А., Голованова О.А. Элементный состав костной ткани человека в норме и при патологии // Вестник Омского университета. 2015. № 4 (78). С. 39—44.

5. **Putlyaev V.I., Safronova T.V.** A new generation of calcium phosphate biomaterials: the role of phase and chemical compositions // Glass and Ceramics. 2006. 4. P. 99–102.

V. 63. No 3-4. P. 99-102.

- 5. Parent M., Baradari H., Champion E., Damia C., Viana-Trecant M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance // Journal of Controlled Release. 2017. V. 252. P. 1–17.
- 7. Сафронова Т.В., Путляев В.И. Медицинское неорганическое материаловедение в России: кальцийфосфатные материалы // Наносистемы: физика, химия, математика. 2013. Т. 4. № 1. С. 24—47.
- Suchanek W., Yashima M., Kakihana M., Yoshimura M. Hydroxyapatite ceramics with selected sintering additives // Biomaterials. 1997. V. 18. P. 923–933.
- Kalita S.J., Bose S., Hosick H.L., Bandyopadhyay A. CaO-P₂O₅-Na₂O-based sintering additives for hydroxyapatite (HAp) ceramics // Biomaterials. 2004. V. 25. P. 2331–2339.
- 9. ICDD, PDF-4 + 2010 (Database), in: Dr. Soorya Kabekkodu (Ed.) International Centre for Diffraction Data, Newtown Square, PA, USA, 2010 (http://www.icdd. com/products/pdf2.htm).

ООО "Наука и технологии"

Учредитель журнала ООО "Наука и технологии".

Журнал зарегистрирован в Комитете Российской Федерации по печати. Свидетельство о регистрации № 014669 от 29.05.1999 г.

Сдано в набор 18.10.2017. Подписано в печать 22.11.2017. Формат 60 × 88 1/8. Печать цифровая. Усл. печ. л. 5,82. Уч.-изд. л. 6,62. Тираж 85 экз.

«Свободная цена».

Оригинал-макет и электронная версия изготовлены в ООО "СиД". Отпечатано в ООО "СиД".