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Abstract. The problem of rolling without slipping of a rotationally symmetric rigid body on a sphere is considered. The rolling
body is assumed to be subjected to the forces, the resultant of which is directed from the center of mass G of the body to the center
O of the sphere, and depends only on the distance between G and O. In this case the solution of this problem is reduced to solving
the second order linear differential equation over the projection of the angular velocity of the body onto its axis of symmetry. Using
the Kovacic algorithm we search for liouvillian solutions of the corresponding second order differential equation in the case, when
the rolling body is a dynamically symmetric ball.

STATEMENT OF THE PROBLEM

The problem of rolling without slipping of a rotationally symmetric body on a fixed supporting surface is a classical
problem of nonholonomic mechanics. In 1897 S. A. Chaplygin in his paper [1] proved that the problem of motion of a
heavy rotationally symmetric body on a horizontal plane can be reduced to solving the second order linear differential
equation over the projection of the angular velocity of the body onto its symmetry axis. In 1909 P. V. Woronetz has
shown [2] that the results obtained by Chaplygin can be extended to the problem of motion of a rotationally symmetric
body on a sphere, if the body is subjected to the forces, the resultant of which is directed from the center of mass G of
the body to the center O of the sphere and depends only on the distance between G and O. In this case the solution of
this problem is also reduced to solving the second order linear differential equation. Following Woronetz, let us prove
here this fact. We will introduce four systems of coordinates (the unit vectors of the axes are indicated in brackets):

Ox1y1z1

(
ex, ey, ez

)
is a fixed system of coordinates with origin at the center of the supporting sphere;

Gxyz (e1, e2, e3) is a system of coordinates, rigidly connected with the rolling body; its origin G is chosen to be
at the center of mass of the body, while the axes are directed along the principal axes of inertia of the system;

Puvn (eu, ev, en) is a moving system of coordinates with origin at the point of contact P of the rolling body with
the supporting sphere, the axes of which are directed along the tangent to the coordinate lines and along the normal to
the surface of the rolling body;

Pu1v1n1
(
eu1 , ev1 , en1

)
is a moving system of coordinates, the axes of which are directed along the tangent to the

coordinate lines and along the normal to the supporting sphere.
The position of the contact point P on the surface S of the body is determined by the radius – vector

ρ =
−−→GP = x (u, v) e1 + y (u, v) e2 + z (u, v) e3,

where u and v are the Gaussian coordinates of the point P on the surface S . We will denote the coefficients of the first
two quadratic forms of the surface of the rolling body by E, F, G and L, M, N respectively. We will assume that the
coordinate lines of the surface S are lines of curvature, therefore

F = 0, M = 0.



The supporting sphere S 1 of the radius R1 is defined by the radius – vector

ρ1 =
−−→OP = x1ex + y1ey + z1ez = R1 sin u1 cos v1ex + R1 sin u1 sin v1ey + R1 cos u1ez,

where u1 and v1 are Gaussian coordinates of the point P on the sphere. For the unit basis vectors eu, ev, en and eu1 , ev1 ,
en1 we have the formulae

eu =
1
√

E

∂ρ

∂u
, ev =

1
√

G

∂ρ

∂v
, en = [eu × ev] ;

eu1 =
1

R1

∂ρ1

∂u1
, ev1 =

1
R1 sin u1

∂ρ1

∂v1
, en1 =

[
eu1 × ev1

]
.

(1)

Mutual orientation between two coordinate systems Gxyz and Puvn is defined by the direction cosine table

x y z

u c11 c12 c13

v c21 c22 c23

n c31 c32 c33

where the coefficients ci j are easily calculated using (1).
Following Woronetz [2], we will define the position of the rolling body by Gaussian coordinates u, v, u1, v1, and

by the angle θ between the Pu and Pv1 axes. We will assume that the body rolls along the supporting sphere without
slipping. This means that two nonholonomic constraints are imposed on the system. The equations of these constraints
have the form:

R1u̇1 = −
√

Eu̇ sin θ +
√

Gv̇ cos θ, R1v̇1 sin u1 =
√

Eu̇ cos θ +
√

Gv̇ sin θ. (2)

Let the velocity w of the center of mass G and the angular velocity vector ω of the body are specified in the
coordinate system Gxyz by the components w1, w2, w3 and ω1, ω2, ω3 respectively. From the condition, that the point
of contact P of the body with the sphere be instantaneously at rest with respect to the sphere, we obtain the following
equations:

w1 + ω2z − ω3y = 0, w2 + ω3x − ω1z = 0, w3 + ω1y − ω2x = 0, (3)

and for components ω1, ω2, ω3 of the vector ω we have the following formulae:

ω1 = c11τv̇ + c21σu̇ + c31n, ω2 = c12τv̇ + c22σu̇ + c32n, ω3 = c13τv̇ + c23σu̇ + c33n, (4)

τ = −

(
N
G
−

1
R1

)
√

G, σ =

(
L
E
−

1
R1

)
√

E,

n = −θ̇ +
1

2
√

EG

(
∂E
∂v

u̇ −
∂G
∂u

v̇
)
− v̇1 cos u1. (5)

We will assume that the rolling rigid body is subjected to the potential forces with the potential energy depending
only on the coordinates u, v of the point P: V = V (u, v). This case takes place, for example, when the body is subjected
to the forces, the resultant of which is directed from the center of mass G of the body to the center O of the sphere,
and depends only on the distance between G and O (”central forces”). Thus, we will assume that V = V (u, v).

Let Θ = Θ (u̇, v̇, u, v, n) be the kinetic energy of the system, derived using (2)-(4). It can be represented in the
following form:

2Θ (u̇, v̇, u, v, n) = K33n2 + 2 (K13u̇ + K23v̇) n + K11u̇2 + 2K12u̇v̇ + K22v̇2, (6)

where the coefficients Ki j are functions of u and v. If we denote by m the mass of the rolling body and by ρ and ε the
distance from the center of mass G to the point of contact P and to the tangent plane to the surface S of the body at P

ρ2 = x2 + y2 + z2, ε = xc31 + yc32 + zc33,



then equations of motion of the body can be written as follows:

d
dt

(
∂Θ

∂u̇

)
−
∂Θ

∂u
=
√

EG
 LN

EG
−

1
R2

1

 ∂Θ

∂n
v̇ +

√
E

R1

1
τ

∂Θ

∂v̇
n − mρ

∂ρ

∂u
n2 − mε

√
EG

(
N
G
−

1
R1

)
nv̇ −

∂V
∂u
,

d
dt

(
∂Θ

∂v̇

)
−
∂Θ

∂v
= −
√

EG
 LN

EG
−

1
R2

1

 ∂Θ

∂n
u̇ +

√
G

R1

1
σ

∂Θ

∂u̇
n − mρ

∂ρ

∂v
n2 + mε

√
EG

(
L
E
−

1
R1

)
nu̇ −

∂V
∂v
,

d
dt

(
∂Θ

∂n

)
= −

√
G

R1

1
σ

∂Θ

∂u̇
v̇ −

√
E

R1

1
τ

∂Θ

∂v̇
u̇ + mρ

(
∂ρ

∂u
u̇ +

∂ρ

∂v
v̇
)

n − mε
LG − NE
√

EG
u̇v̇.

(7)

Equations (7) together with equation (5) and equations of nonholonomic constraints (2) form the complete system
of equations for determining the six unknown functions u, v, n, θ, u1, v1.

Now we assume that the rigid body rolling on a supporting sphere is a rotationally symmetric body, i.e. its
moments of inertia A1 and A2 with respect to the axes Gx and Gy are equal to each other (A1 = A2) and the surface S
of the body is defined by equations

x = f (u) cos v, y = f (u) sin v, z = g (u) . (8)

Then the following conditions are valid

∂Θ

∂v
= 0,

∂ρ

∂v
= 0,

∂V
∂v

= 0.

Moreover in the expression (6) for the kinetic energy Θ we will have

K12 = 0, K13 = 0

and the remaining coefficients Ki j will be functions of only u. In this case two last equations of the system (7) give:

d
dt

(K23n + K22v̇) = (a1n + b1v̇) u̇,
d
dt

(K33n + K23v̇) = (a2n + b2v̇) u̇, (9)

where the coefficients K22, K23, K33, a1, a2, b1, b2 are functions of only u. Passing to the new independent variable u
instead of t we can transform the system (9) to the form

K23
dn
du

+ K22
dv̇
du

= a′1n + b′1v̇, K33
dn
du

+ K23
dv̇
du

= a′2n + b′2v̇, (10)

where a′1, b′1, a′2, b′2 are functions of only u. This system of two first order linear differential equations can be trans-
formed to the second order linear differential equation. If we find the general solution of this equation, the problem
can be solved by quadratures.

Note that for the body bounded by the surface (8) we have c23 = 0 and therefore v̇ can be expressed through n
and ω3 using (4). Therefore the system (10) can be represented as the system of two linear differential equations for
determining the two unknown functions n and ω3.

THE CASE OF A DYNAMICALLY SYMMETRIC BALL

Let us assume now that the rolling body is a nonhomogeneous dynamically symmetric ball. Let R be the radius of the
ball and a is the distance from the center of mass G of the ball to its geometric center. In this case formulae (8) can be
written as follows:

x = R sin u cos v, y = R sin u sin v, z = R cos u + a.

The system of two first order linear differential equations over n and ω3 has the form:

dn
du

= a1n + a2ω3,
dω3

du
= b1n + b2ω3,



a1 = −
mR2 ((A3 − A1) R cos u + A3a) sin u(

A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2
)

R1

, a2 =
(R1 + R)

((
A3 + mR2

)
(A3 − A1) − A3ma2

)
sin u(

A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2
)

R1

,

b1 =
mR3A1 sin u(

A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2
)

R1

, b2 =
mR (R1 + R) ((A3 − A1) R cos u + A3a) sin u(

A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2
)

R1

.

This system can be reduced to the second-order linear differential equation over ω3:

d2ω3

du2 + d1
dω3

du
+ d2ω3 = 0, (11)

d1 = −
2mR2 (A3 − A1) sin2 u cos u +

(
3 − cos2 u

)
mRaA3 + A3

(
A1 + mR2 + ma2

)
cos u(

A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2
)

sin u
,

d2 =
mR2

(
R2

1 − R2
)

(A3 − A1) sin2 u(
A1A3 + A1mR2 sin2 u + A3m (R cos u + a)2

)
R2

1

.

Note that under condition R1 = R (i.e. when the radius of the ball is equal to the radius of the supporting sphere),
equation (11) has a particular solution

ω3 = ω0
3 = const.

We will change the independent variable in equation (11) by the formula cos u = x. Then equation (11) can be
written as follows:

d2ω3

dx2 + d1
dω3

dx
+ d2ω3 = 0, (12)

d1 =
3 (2x − x1 − x2)

2 (x − x1) (x − x2)
, d2 =

(
R2

1 − R2
)

(x − x1) (x − x2) R2
1

.

Here d1, d2 ∈ C (x) are rational functions of x, and x1 and x2 are roots of the equation

A1A3 + A1mR2
(
1 − x2

)
+ mA3 (Rx + a)2 = 0.

In order to reduce the equation (12) to a simpler form, the following transformation is made

y = ω3 exp
(

1
2

∫
d1 (x) dx

)
,

then equation (12) becomes
d2y
dx2 =

1
2

d (d1)
dx

+
d2

1

4
− d2

 y = S (x) y, (13)

S (x) =
R2

1 + 8R2

8R2
1 (x1 − x2) (x − x1)

−
3

16 (x − x1)2 −
R2

1 + 8R2

8R2
1 (x1 − x2) (x − x2)

−
3

16 (x − x2)2 .

Equation (13) is the second-order linear differential equation with rational coefficients. Therefore we can use the
Kovacic algorithm [3] to find liouvillian solutions of this differential equation. The direct application of the Kovacic
algorithm to the equation (13) gives the following results.

Theorem 1 Equation (13) has a liouvillian solution of the form

y = exp
(∫

ω (x) dx
)
,

where ω (x) is a rational function ω (x) ∈ C (x), when the condition

R
R1

=
N
2

is valid. Here N is a natural number.



For example, when R/R1 = 1/2 the general solution of equation (12) has the form

ω3 =
c1

√
x − x1

+
c2

√
x − x2

.

When R/R1 = 3/2 the general solution of equation (12) has the form:

ω3 =
c1 (4x − x1 − 3x2)

√
x − x2

+
c2 (4x − 3x1 − x2)

√
x − x1

.

Theorem 2 In general case equation (13) has a liouvillian solution of the form

y = exp
(∫

ω (x) dx
)
,

where ω (x) is algebraic over C (x) of degree 2.

The general solution of equation (12) for arbitrary values of parameters of the problem has the form

ω3 =
c1

(√
x − x1 +

√
x − x2

) 2R
R1

√
(x − x1) (x − x2)

+
c2

(√
x − x1 +

√
x − x2

)− 2R
R1

√
(x − x1) (x − x2)

.

Thus we proved that the general solution of equation (12) are liouvillian for all values of parameters. Therefore
the problem of motion of a dynamically symmetric ball on a spherical surface under the action of potential forces with
the potential energy V = V (u) are integrable in liouvillian functions.
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