ИСТИНА |
Войти в систему Регистрация |
|
ИСТИНА ПсковГУ |
||
Актуальность проблемы. Увеличение продолжительности жизни, которое должно стать характерной чертой нового тысячелетия, требует решения ряда медико-материаловедческих проблем, в частности, создания материалов для искусственных органов и тканей. В настоящее время рынок биоматериалов оценивается суммой 3 млрд.$, прогнозируемый годовой прирост составляет 10%, а объемы требуемых материалов оцениваются на уровне десятков тонн. При утрате значительных по размеру участков кости (вследствие ее повреждения или после удаления опухоли) возникает необходимость в возмещении возникшего дефекта. Число больных, нуждающихся в операциях по восстановлению целостности костей, очень велико – только в США это более 1 млн. человек ежегодно. Создание биоматериалов для замены поврежденной костной ткани - перспективная, бурно развивающаяся область исследований. Костная ткань представляет собой композиционный материал на основе ультрадисперсного карбонатсодержащего гидроксилапатита Са10-x-y/2(HPO4)x(CO3)y(РО4)6-x-y(ОН)2-x и белка коллагена с многоуровневой структурной организацией компонентов. В силу сходства химического состава, материалы на основе фосфатов кальция находят широкое применение в медицине при операциях по восстановлению целостности поврежденной кости. Считается, что не только химический состав, но и морфология синтетических кристаллов гидроксилапатита является важной характеристикой, определяющей отклик организма на чужеродный материал. С этой точки зрения идеальным является материал, химический состав и гранулометрия которого подобны костному биоминералу: нестехиометрический гидроксилапатит Са10-х(НРО4)х(РО4)6-х(ОН)2-х (0<x<1) с кристаллами в форме пластин размерами 40 х 20 х 5 нм и осью “с” кристаллической структуры, лежащей в плоскости кристалла. В настоящее время в медицинской практике наиболее широко используются крупнокристаллические керамические материалы в форме плотных и пористых блоков и гранул. Клинические испытания показали, что крупнокристаллический гидроксилапатит (ГАП) значительно медленнее превращается в новую костную ткань по мере резорбции (растворения в организме) в отличие от высокодисперсных материалов - аморфного фосфата кальция (АФК) или нанокристаллических фосфатов кальция. Разработанные к настоящему времени растворные методы синтеза ГАП позволяют получать высокодисперсные порошки, форма частиц которых, в зависимости от условий синтеза, непредсказуемо варьируется в широких пределах от равноосной до игольчатой. Тем не менее, информация о влиянии параметров синтеза ГАП на морфологию конечного продукта, выраженная в явном и количественном виде, отсутствует. Отмечается, что образцы порошков фосфатов кальция, полученные в рамках одинаковой методики синтеза, вызывают различную реакцию организма, вплоть до полного отторжения материала. В этой связи возникает целый ряд химико-материаловедческих задач в области синтеза фосфатов кальция с заданным составом и микроморфологией, оценки их будущей биоактивности in vitro и разработки приемов корректировки биоактивности путем химического модифицирования полученного порошка. Целью работы являлся направленный синтез биологически активных фосфатов кальция с заданным составом и микроморфологией и создание биорезорбируемых композиционных материалов на их основе. «Биоактивность» - комплексная характеристика совместимых с организмом материалов, учитывающая, помимо биологических процессов роста и дифференциации клеток, также: (а) скорость растворения материала в слабокислой среде, создаваемой определенными группами клеток; (б) скорость осаждения гидроксилапатита из межтканевой жидкости организма на поверхности материала. В данной работе процессы растворения и осаждения ГАП изучались в модельных растворах, имитирующих состав жидких сред организма. Для достижения поставленной цели в работе решались следующие задачи: 1. Систематическое исследование влияния параметров синтеза ГАП методом осаждения (рН, температура, состав раствора, ионная сила, время синтеза) на микроморфологию и состав получаемого фосфата. 2. Исследование кинетики синтеза ГАП путем гидролиза других ортофосфатов кальция; выявление влияния условий гидролитического синтеза на морфологию кристаллов ГАП. 3. Модификация химического состава ГАП с целью повышения его биоактивности; оценка биоактивности полученных материалов в процессе модельных реакций растворения/осаждения in vitro. 4. Создание модельных композиционных материалов типа ГАП/биополимер и многокомпонентных цементов на основе синтезированных в работе фосфатов кальция. Научная новизна работы состоит в следующих положениях, которые выносятся на защиту: 1. Систематически исследовано влияние параметров (факторов) синтеза ГАП методом осаждения из растворов солей (начальная концентрация реагентов, рН, температура) на размер и форму получаемых кристаллов. Морфологические характеристики кристаллов ГАП были установлены в результате совместного применения полнопрофильного рентгенографического анализа и просвечивающей электронной микроскопии. 2. В результате регрессионного анализа морфологических характеристик кристаллов получены математические модели, позволяющие количественно оценить факторы синтеза ГАП методом осаждения. Установлен значительный вклад двойных эффектов взаимодействия факторов при синтезе ГАП из Ca(NO3)2 и тройного эффекта при синтезе из Ca(CH3COO)2. Интерпретация регрессионных моделей дана на основании расчетов ионных равновесий в растворах солей. 3. Впервые обнаружена мезопористая структура аморфного фосфата кальция с размерами пор 5 – 50 нм и предложена модель ее образования. Изучено наследование пористости нанокристаллами ГАП, полученными кристаллизацией АФК. 4. Показано, что при синтезе ГАП гидролизом трикальциевого фосфата -Са3(РО4)2 (ТКФ) с примесью гидроксилапатита скорость реакции падает с увеличением степени химической неоднородности материала, задаваемой соотношением Са/Р исходных реагентов при синтезе ТКФ. Впервые отмечено, что рост температуры гидролиза приводит к изменению морфологии ГАП с пластинчатой (при 40 оС) на игольчатую (при 100 оС). 5. Предложен метод синтеза, позволяющий проводить химическую модификацию ГАП посредством частичного замещения фосфатных групп на силикатные (до 4% вес. кремния). Показано, что кремнийсодержащий ГАП обладает большей растворимостью в слабокислых растворах по сравнению с незамещенным гидроксилапатитом. Практическая значимость работы 1. Получены регрессионные уравнения, позволяющие путем выбора определенных параметров растворного синтеза проводить направленное получение высокодисперсных порошков ГАП с кристаллами требуемого размера, формы и состава. Для контроля микроморфологии получаемых кристаллов может быть использована апробированная в работе методика полнопрофильного рентгенографического анализа в варианте для анизотропной частицы. 2. Полученные в работе порошковые материалы ранжированы по биоактивности на основании скорости растворения при рН = 4-6. Использованная методика может быть рекомендована как простой прием предварительного тестирования биоматериалов in vitro. 3. Предложены цементные смеси фосфатов и силикатов кальция, компактные материалы на основе которых демонстрируют прочность 5-13 МПа после трехдневной обработки в растворе искусственной межтканевой жидкости и могут быть использованы в стоматологии для заполнения внутренних полостей зубной ткани любой формы. Методом двойной диффузии через проницаемую полимерную мембрану получены композиционные материалы ГАП/желатин; примененная методика может быть использована для биомиметического синтеза резорбируемых композитов. 4. Рекомендовано использовать мезопористый АФК с высокоразвитой поверхностью, а также цементные материалы с добавками биополимера, в качестве систем-носителей лекарственных препаратов локального пролонгированного действия. Данная идея реализована на примере инкапсуляции антибиотика широко спектра действия (гентамицина) в композит силикофосфатный цемент/желатин.