![]() |
ИСТИНА |
Войти в систему Регистрация |
ИСТИНА ПсковГУ |
||
For deeper understanding the processes of intramolecular energy transfer within NOLs, ultrafast spectroscopy investigations of the NOL, model donor and acceptor luminophores were performed for the first time for this class of compounds. It was found that the time constant of the energy transfer from donor to acceptor luminophores within the NOL is τ1 = 105 fs, which is significantly faster than the vibrational relaxation within the donor (ca. 400 fs). Based on these findings, a kinetic scheme of the electronic excitation energy deactivation processes in the NOL was developed. The results obtained not only directly proved that the mechanism of energy transfer within the NOLs is based on Förster resonance energy transfer of the excitation energy from donor to acceptor luminophores, but also highlight the advantages of NOLs and NOL-based materials for future photonics applications – fast and efficient plastic scintillators, scintillating fibers and other spectral shifting optical materials.