![]() |
ИСТИНА |
Войти в систему Регистрация |
ИСТИНА ПсковГУ |
||
Рассматривается классическая задача динамики неголономных систем – задача о движении тяжелого твердого тела по абсолютно шероховатой горизонтальной плоскости. Обсуждается явление потери устойчивости вращения тела при некотором критическом значении угловой скорости. Отмечается, что указанное явление сопровождается возникновением периодических движений тела с частотой, близкой к критическому значению, то есть имеет место бифуркация Андронова – Хопфа. Путем прямого вычисления первой ляпуновской величины доказано, что соответствующие периодические движения являются неустойчивыми.